Trajectories of fluid particles in a periodic water wave

We compute trajectories of fluid particles in a water wave that propagates with a constant shape at a constant speed. The Stokes drift, which asserts that fluid particles are pushed forward by a wave, is proved using a new method. Numerical examples with various gravity and surface tension coefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2012-04, Vol.370 (1964), p.1661-1676
Hauptverfasser: Okamoto, Hisashi, Sh ji, Mayumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1676
container_issue 1964
container_start_page 1661
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 370
creator Okamoto, Hisashi
Sh ji, Mayumi
description We compute trajectories of fluid particles in a water wave that propagates with a constant shape at a constant speed. The Stokes drift, which asserts that fluid particles are pushed forward by a wave, is proved using a new method. Numerical examples with various gravity and surface tension coefficients are presented.
doi_str_mv 10.1098/rsta.2011.0447
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22393115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23250141</jstor_id><sourcerecordid>23250141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-17d3fe27699e75938acc9edcc891318b81b479a5e908d360911fdbbb37a52eb03</originalsourceid><addsrcrecordid>eNp1kDtP5DAURi3EindLB0pHlVlfO47tEvGWWK20AkRnOc6N5CEzHuwEdv79ehQe1TZ-fed-kg8hx0BnQLX6GdNgZ4wCzGhVyS2yB5WEkumabeczr6tSUP68S_ZTmtOM1YLtkF3GuOYAYo-oh2jn6IYQPaYidEXXj74tVjYO3vX5yS8LW6ww-tB6V7zbAWNe3_CQ_Ohsn_DoYz8gj9dXDxe35f3vm7uL8_vSCSmHEmTLO2Sy1hql0FxZ5zS2zikNHFSjoKmktgI1VS2vqQbo2qZpuLSCYUP5ATmbelcxvI6YBrPwyWHf2yWGMRnN6roSEkQmZxPpYkgpYmdW0S9sXBugZiPLbGSZjSyzkZUHTj-qx2aB7Rf-aScDfAJiWOc_BudxWJt5GOMyX_9fezJNzVPW-t3KmaBQQc7LKfdpwL9fuY0vppZcCvOkKsPl9eUfJX4Zyv8BMWGOjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926645715</pqid></control><display><type>article</type><title>Trajectories of fluid particles in a periodic water wave</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Okamoto, Hisashi ; Sh ji, Mayumi</creator><creatorcontrib>Okamoto, Hisashi ; Sh ji, Mayumi</creatorcontrib><description>We compute trajectories of fluid particles in a water wave that propagates with a constant shape at a constant speed. The Stokes drift, which asserts that fluid particles are pushed forward by a wave, is proved using a new method. Numerical examples with various gravity and surface tension coefficients are presented.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0447</identifier><identifier>PMID: 22393115</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Amplitude ; Coordinate systems ; Gravity waves ; Mathematical constants ; Mathematics ; Nonlinear Analysis ; Partial Differential Equations ; Particle trajectories ; Rotation ; Trajectories ; Water Wave ; Water waves ; Waves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-04, Vol.370 (1964), p.1661-1676</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-17d3fe27699e75938acc9edcc891318b81b479a5e908d360911fdbbb37a52eb03</citedby><cites>FETCH-LOGICAL-c577t-17d3fe27699e75938acc9edcc891318b81b479a5e908d360911fdbbb37a52eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23250141$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23250141$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,829,27905,27906,58002,58235</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22393115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamoto, Hisashi</creatorcontrib><creatorcontrib>Sh ji, Mayumi</creatorcontrib><title>Trajectories of fluid particles in a periodic water wave</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>We compute trajectories of fluid particles in a water wave that propagates with a constant shape at a constant speed. The Stokes drift, which asserts that fluid particles are pushed forward by a wave, is proved using a new method. Numerical examples with various gravity and surface tension coefficients are presented.</description><subject>Amplitude</subject><subject>Coordinate systems</subject><subject>Gravity waves</subject><subject>Mathematical constants</subject><subject>Mathematics</subject><subject>Nonlinear Analysis</subject><subject>Partial Differential Equations</subject><subject>Particle trajectories</subject><subject>Rotation</subject><subject>Trajectories</subject><subject>Water Wave</subject><subject>Water waves</subject><subject>Waves</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kDtP5DAURi3EindLB0pHlVlfO47tEvGWWK20AkRnOc6N5CEzHuwEdv79ehQe1TZ-fed-kg8hx0BnQLX6GdNgZ4wCzGhVyS2yB5WEkumabeczr6tSUP68S_ZTmtOM1YLtkF3GuOYAYo-oh2jn6IYQPaYidEXXj74tVjYO3vX5yS8LW6ww-tB6V7zbAWNe3_CQ_Ohsn_DoYz8gj9dXDxe35f3vm7uL8_vSCSmHEmTLO2Sy1hql0FxZ5zS2zikNHFSjoKmktgI1VS2vqQbo2qZpuLSCYUP5ATmbelcxvI6YBrPwyWHf2yWGMRnN6roSEkQmZxPpYkgpYmdW0S9sXBugZiPLbGSZjSyzkZUHTj-qx2aB7Rf-aScDfAJiWOc_BudxWJt5GOMyX_9fezJNzVPW-t3KmaBQQc7LKfdpwL9fuY0vppZcCvOkKsPl9eUfJX4Zyv8BMWGOjg</recordid><startdate>20120413</startdate><enddate>20120413</enddate><creator>Okamoto, Hisashi</creator><creator>Sh ji, Mayumi</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120413</creationdate><title>Trajectories of fluid particles in a periodic water wave</title><author>Okamoto, Hisashi ; Sh ji, Mayumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-17d3fe27699e75938acc9edcc891318b81b479a5e908d360911fdbbb37a52eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amplitude</topic><topic>Coordinate systems</topic><topic>Gravity waves</topic><topic>Mathematical constants</topic><topic>Mathematics</topic><topic>Nonlinear Analysis</topic><topic>Partial Differential Equations</topic><topic>Particle trajectories</topic><topic>Rotation</topic><topic>Trajectories</topic><topic>Water Wave</topic><topic>Water waves</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, Hisashi</creatorcontrib><creatorcontrib>Sh ji, Mayumi</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, Hisashi</au><au>Sh ji, Mayumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectories of fluid particles in a periodic water wave</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-04-13</date><risdate>2012</risdate><volume>370</volume><issue>1964</issue><spage>1661</spage><epage>1676</epage><pages>1661-1676</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We compute trajectories of fluid particles in a water wave that propagates with a constant shape at a constant speed. The Stokes drift, which asserts that fluid particles are pushed forward by a wave, is proved using a new method. Numerical examples with various gravity and surface tension coefficients are presented.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>22393115</pmid><doi>10.1098/rsta.2011.0447</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-04, Vol.370 (1964), p.1661-1676
issn 1364-503X
1471-2962
language eng
recordid cdi_pubmed_primary_22393115
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amplitude
Coordinate systems
Gravity waves
Mathematical constants
Mathematics
Nonlinear Analysis
Partial Differential Equations
Particle trajectories
Rotation
Trajectories
Water Wave
Water waves
Waves
title Trajectories of fluid particles in a periodic water wave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectories%20of%20fluid%20particles%20in%20a%20periodic%20water%20wave&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Okamoto,%20Hisashi&rft.date=2012-04-13&rft.volume=370&rft.issue=1964&rft.spage=1661&rft.epage=1676&rft.pages=1661-1676&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0447&rft_dat=%3Cjstor_pubme%3E23250141%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926645715&rft_id=info:pmid/22393115&rft_jstor_id=23250141&rfr_iscdi=true