Unsupervised Image Matching Based on Manifold Alignment

This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-08, Vol.34 (8), p.1658-1664
Hauptverfasser: Pei, Yuru, Huang, Fengchun, Shi, Fuhao, Zha, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1664
container_issue 8
container_start_page 1658
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 34
creator Pei, Yuru
Huang, Fengchun
Shi, Fuhao
Zha, Hongbin
description This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.
doi_str_mv 10.1109/TPAMI.2011.229
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22144524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095564</ieee_id><sourcerecordid>1082405611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</originalsourceid><addsrcrecordid>eNpF0EtLw0AUBeBBFFurWzeCZCO4SZx3MstafBRadNGuw2Ryp47kUTOJ4L93aquuBs5893I5CF0SnBCC1d3qdbqcJxQTklCqjtCYKKZiJpg6RmNMJI2zjGYjdOb9O8aEC8xO0YhSwrmgfIzSdeOHLXSfzkMZzWu9gWipe_Pmmk10r3dh24SkcbatymhauU1TQ9OfoxOrKw8Xh3eC1o8Pq9lzvHh5ms-mi9gwLvoYpEgLEk6gFusSWys0BRqyQmkscclKmkpTZIEpi5WUUAIpTaaYBpxZySbodr9327UfA_g-r503UFW6gXbwOcEZ5VhIQgJN9tR0rfcd2HzbuVp3XwHlu7Lyn7LyXVl5KCsMXB92D0UN5R__bSeAmwPQ3ujKdroxzv87KTinMg3uau8cAPx9S6yEkJx9A0nceSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082405611</pqid></control><display><type>article</type><title>Unsupervised Image Matching Based on Manifold Alignment</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</creator><creatorcontrib>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</creatorcontrib><description>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.229</identifier><identifier>PMID: 22144524</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face ; Image matching ; Lighting ; Manifold alignment ; Manifolds ; nonrigid transformation ; Optimization ; parameterized distance curve ; Pattern recognition. Digital image processing. Computational geometry ; unsupervised image set matching ; Vectors</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-08, Vol.34 (8), p.1658-1664</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</citedby><cites>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26544267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pei, Yuru</creatorcontrib><creatorcontrib>Huang, Fengchun</creatorcontrib><creatorcontrib>Shi, Fuhao</creatorcontrib><creatorcontrib>Zha, Hongbin</creatorcontrib><title>Unsupervised Image Matching Based on Manifold Alignment</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Image matching</subject><subject>Lighting</subject><subject>Manifold alignment</subject><subject>Manifolds</subject><subject>nonrigid transformation</subject><subject>Optimization</subject><subject>parameterized distance curve</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>unsupervised image set matching</subject><subject>Vectors</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpF0EtLw0AUBeBBFFurWzeCZCO4SZx3MstafBRadNGuw2Ryp47kUTOJ4L93aquuBs5893I5CF0SnBCC1d3qdbqcJxQTklCqjtCYKKZiJpg6RmNMJI2zjGYjdOb9O8aEC8xO0YhSwrmgfIzSdeOHLXSfzkMZzWu9gWipe_Pmmk10r3dh24SkcbatymhauU1TQ9OfoxOrKw8Xh3eC1o8Pq9lzvHh5ms-mi9gwLvoYpEgLEk6gFusSWys0BRqyQmkscclKmkpTZIEpi5WUUAIpTaaYBpxZySbodr9327UfA_g-r503UFW6gXbwOcEZ5VhIQgJN9tR0rfcd2HzbuVp3XwHlu7Lyn7LyXVl5KCsMXB92D0UN5R__bSeAmwPQ3ujKdroxzv87KTinMg3uau8cAPx9S6yEkJx9A0nceSw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Pei, Yuru</creator><creator>Huang, Fengchun</creator><creator>Shi, Fuhao</creator><creator>Zha, Hongbin</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Unsupervised Image Matching Based on Manifold Alignment</title><author>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Image matching</topic><topic>Lighting</topic><topic>Manifold alignment</topic><topic>Manifolds</topic><topic>nonrigid transformation</topic><topic>Optimization</topic><topic>parameterized distance curve</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>unsupervised image set matching</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Yuru</creatorcontrib><creatorcontrib>Huang, Fengchun</creatorcontrib><creatorcontrib>Shi, Fuhao</creatorcontrib><creatorcontrib>Zha, Hongbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Yuru</au><au>Huang, Fengchun</au><au>Shi, Fuhao</au><au>Zha, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Image Matching Based on Manifold Alignment</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>34</volume><issue>8</issue><spage>1658</spage><epage>1664</epage><pages>1658-1664</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22144524</pmid><doi>10.1109/TPAMI.2011.229</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2012-08, Vol.34 (8), p.1658-1664
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_22144524
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Face
Image matching
Lighting
Manifold alignment
Manifolds
nonrigid transformation
Optimization
parameterized distance curve
Pattern recognition. Digital image processing. Computational geometry
unsupervised image set matching
Vectors
title Unsupervised Image Matching Based on Manifold Alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Image%20Matching%20Based%20on%20Manifold%20Alignment&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Pei,%20Yuru&rft.date=2012-08-01&rft.volume=34&rft.issue=8&rft.spage=1658&rft.epage=1664&rft.pages=1658-1664&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.229&rft_dat=%3Cproquest_RIE%3E1082405611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082405611&rft_id=info:pmid/22144524&rft_ieee_id=6095564&rfr_iscdi=true