Unsupervised Image Matching Based on Manifold Alignment
This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2012-08, Vol.34 (8), p.1658-1664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1664 |
---|---|
container_issue | 8 |
container_start_page | 1658 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 34 |
creator | Pei, Yuru Huang, Fengchun Shi, Fuhao Zha, Hongbin |
description | This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach. |
doi_str_mv | 10.1109/TPAMI.2011.229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_22144524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095564</ieee_id><sourcerecordid>1082405611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</originalsourceid><addsrcrecordid>eNpF0EtLw0AUBeBBFFurWzeCZCO4SZx3MstafBRadNGuw2Ryp47kUTOJ4L93aquuBs5893I5CF0SnBCC1d3qdbqcJxQTklCqjtCYKKZiJpg6RmNMJI2zjGYjdOb9O8aEC8xO0YhSwrmgfIzSdeOHLXSfzkMZzWu9gWipe_Pmmk10r3dh24SkcbatymhauU1TQ9OfoxOrKw8Xh3eC1o8Pq9lzvHh5ms-mi9gwLvoYpEgLEk6gFusSWys0BRqyQmkscclKmkpTZIEpi5WUUAIpTaaYBpxZySbodr9327UfA_g-r503UFW6gXbwOcEZ5VhIQgJN9tR0rfcd2HzbuVp3XwHlu7Lyn7LyXVl5KCsMXB92D0UN5R__bSeAmwPQ3ujKdroxzv87KTinMg3uau8cAPx9S6yEkJx9A0nceSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082405611</pqid></control><display><type>article</type><title>Unsupervised Image Matching Based on Manifold Alignment</title><source>IEEE Electronic Library (IEL)</source><creator>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</creator><creatorcontrib>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</creatorcontrib><description>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.229</identifier><identifier>PMID: 22144524</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face ; Image matching ; Lighting ; Manifold alignment ; Manifolds ; nonrigid transformation ; Optimization ; parameterized distance curve ; Pattern recognition. Digital image processing. Computational geometry ; unsupervised image set matching ; Vectors</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2012-08, Vol.34 (8), p.1658-1664</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</citedby><cites>FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22144524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pei, Yuru</creatorcontrib><creatorcontrib>Huang, Fengchun</creatorcontrib><creatorcontrib>Shi, Fuhao</creatorcontrib><creatorcontrib>Zha, Hongbin</creatorcontrib><title>Unsupervised Image Matching Based on Manifold Alignment</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Image matching</subject><subject>Lighting</subject><subject>Manifold alignment</subject><subject>Manifolds</subject><subject>nonrigid transformation</subject><subject>Optimization</subject><subject>parameterized distance curve</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>unsupervised image set matching</subject><subject>Vectors</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpF0EtLw0AUBeBBFFurWzeCZCO4SZx3MstafBRadNGuw2Ryp47kUTOJ4L93aquuBs5893I5CF0SnBCC1d3qdbqcJxQTklCqjtCYKKZiJpg6RmNMJI2zjGYjdOb9O8aEC8xO0YhSwrmgfIzSdeOHLXSfzkMZzWu9gWipe_Pmmk10r3dh24SkcbatymhauU1TQ9OfoxOrKw8Xh3eC1o8Pq9lzvHh5ms-mi9gwLvoYpEgLEk6gFusSWys0BRqyQmkscclKmkpTZIEpi5WUUAIpTaaYBpxZySbodr9327UfA_g-r503UFW6gXbwOcEZ5VhIQgJN9tR0rfcd2HzbuVp3XwHlu7Lyn7LyXVl5KCsMXB92D0UN5R__bSeAmwPQ3ujKdroxzv87KTinMg3uau8cAPx9S6yEkJx9A0nceSw</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Pei, Yuru</creator><creator>Huang, Fengchun</creator><creator>Shi, Fuhao</creator><creator>Zha, Hongbin</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Unsupervised Image Matching Based on Manifold Alignment</title><author>Pei, Yuru ; Huang, Fengchun ; Shi, Fuhao ; Zha, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-e657b18822f0ad0ff5a2e257bb9a060d3d276cb86579f0966ede1dc893ae08f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Image matching</topic><topic>Lighting</topic><topic>Manifold alignment</topic><topic>Manifolds</topic><topic>nonrigid transformation</topic><topic>Optimization</topic><topic>parameterized distance curve</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>unsupervised image set matching</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Yuru</creatorcontrib><creatorcontrib>Huang, Fengchun</creatorcontrib><creatorcontrib>Shi, Fuhao</creatorcontrib><creatorcontrib>Zha, Hongbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pei, Yuru</au><au>Huang, Fengchun</au><au>Shi, Fuhao</au><au>Zha, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Image Matching Based on Manifold Alignment</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>34</volume><issue>8</issue><spage>1658</spage><epage>1664</epage><pages>1658-1664</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22144524</pmid><doi>10.1109/TPAMI.2011.229</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2012-08, Vol.34 (8), p.1658-1664 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_22144524 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Face Image matching Lighting Manifold alignment Manifolds nonrigid transformation Optimization parameterized distance curve Pattern recognition. Digital image processing. Computational geometry unsupervised image set matching Vectors |
title | Unsupervised Image Matching Based on Manifold Alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Image%20Matching%20Based%20on%20Manifold%20Alignment&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Pei,%20Yuru&rft.date=2012-08-01&rft.volume=34&rft.issue=8&rft.spage=1658&rft.epage=1664&rft.pages=1658-1664&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.229&rft_dat=%3Cproquest_RIE%3E1082405611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082405611&rft_id=info:pmid/22144524&rft_ieee_id=6095564&rfr_iscdi=true |