High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity

Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2012-01, Vol.4 (2), p.48-413
Hauptverfasser: Xie, Shuhong, Gannepalli, Anil, Chen, Qian Nataly, Liu, Yuanming, Zhou, Yichun, Proksch, Roger, Li, Jiangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 2
container_start_page 48
container_title Nanoscale
container_volume 4
creator Xie, Shuhong
Gannepalli, Anil
Chen, Qian Nataly
Liu, Yuanming
Zhou, Yichun
Proksch, Roger
Li, Jiangyu
description Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO 3 nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects. We probe BiFeO 3 nanofiber and its dissipative domain switching quantitatively using high sensitivity dual frequency resonance tracking piezoresponse force microscopy.
doi_str_mv 10.1039/c1nr11099c
format Article
fullrecord <record><control><sourceid>pubmed_rsc_p</sourceid><recordid>TN_cdi_pubmed_primary_22101512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22101512</sourcerecordid><originalsourceid>FETCH-LOGICAL-p188t-bdca25103017e9cd8aa0c592a453bb8a28c59411ccafc308349af8af4b2871d73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWwYQ8yHxDwI2mcJVSUIlXqBtbVxA9qlNjBTqnC12OpUHasZkb36EhzEbqk5JYSXt1J6gKlpKrkERozkpOM85IdH_ZpPkJnMb4TMq34lJ-iEWOU0IKyMdot7NsGBx19s-2td_hjC663PfT2U-PO6i-fws67qLHxQWrcWhl8lL4bsDf4wc71imMHzhtb6xDxzvYbrAK0SSGhaQas3Qac1ApH7aJNYtsP5-jEQBP1xc-coNf548tskS1XT8-z-2XWUSH6rFYSWJG-JLTUlVQCgMiiYpAXvK4FMJGunFIpwUhOBM8rMAJMXjNRUlXyCbree7tt3Wq17oJtIQzr3wYScLMHQpSH9K_RdadMYq7-Y_g3nXh1_g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xie, Shuhong ; Gannepalli, Anil ; Chen, Qian Nataly ; Liu, Yuanming ; Zhou, Yichun ; Proksch, Roger ; Li, Jiangyu</creator><creatorcontrib>Xie, Shuhong ; Gannepalli, Anil ; Chen, Qian Nataly ; Liu, Yuanming ; Zhou, Yichun ; Proksch, Roger ; Li, Jiangyu</creatorcontrib><description>Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO 3 nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects. We probe BiFeO 3 nanofiber and its dissipative domain switching quantitatively using high sensitivity dual frequency resonance tracking piezoresponse force microscopy.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c1nr11099c</identifier><identifier>PMID: 22101512</identifier><language>eng</language><publisher>England</publisher><subject>Bismuth - chemistry ; Elastic Modulus ; Ferric Compounds - chemistry ; Materials Testing - methods ; Micro-Electrical-Mechanical Systems - methods ; Microscopy, Atomic Force - methods ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Sensitivity and Specificity ; Tensile Strength</subject><ispartof>Nanoscale, 2012-01, Vol.4 (2), p.48-413</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22101512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Shuhong</creatorcontrib><creatorcontrib>Gannepalli, Anil</creatorcontrib><creatorcontrib>Chen, Qian Nataly</creatorcontrib><creatorcontrib>Liu, Yuanming</creatorcontrib><creatorcontrib>Zhou, Yichun</creatorcontrib><creatorcontrib>Proksch, Roger</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><title>High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO 3 nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects. We probe BiFeO 3 nanofiber and its dissipative domain switching quantitatively using high sensitivity dual frequency resonance tracking piezoresponse force microscopy.</description><subject>Bismuth - chemistry</subject><subject>Elastic Modulus</subject><subject>Ferric Compounds - chemistry</subject><subject>Materials Testing - methods</subject><subject>Micro-Electrical-Mechanical Systems - methods</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Sensitivity and Specificity</subject><subject>Tensile Strength</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWwYQ8yHxDwI2mcJVSUIlXqBtbVxA9qlNjBTqnC12OpUHasZkb36EhzEbqk5JYSXt1J6gKlpKrkERozkpOM85IdH_ZpPkJnMb4TMq34lJ-iEWOU0IKyMdot7NsGBx19s-2td_hjC663PfT2U-PO6i-fws67qLHxQWrcWhl8lL4bsDf4wc71imMHzhtb6xDxzvYbrAK0SSGhaQas3Qac1ApH7aJNYtsP5-jEQBP1xc-coNf548tskS1XT8-z-2XWUSH6rFYSWJG-JLTUlVQCgMiiYpAXvK4FMJGunFIpwUhOBM8rMAJMXjNRUlXyCbree7tt3Wq17oJtIQzr3wYScLMHQpSH9K_RdadMYq7-Y_g3nXh1_g</recordid><startdate>20120121</startdate><enddate>20120121</enddate><creator>Xie, Shuhong</creator><creator>Gannepalli, Anil</creator><creator>Chen, Qian Nataly</creator><creator>Liu, Yuanming</creator><creator>Zhou, Yichun</creator><creator>Proksch, Roger</creator><creator>Li, Jiangyu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20120121</creationdate><title>High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity</title><author>Xie, Shuhong ; Gannepalli, Anil ; Chen, Qian Nataly ; Liu, Yuanming ; Zhou, Yichun ; Proksch, Roger ; Li, Jiangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p188t-bdca25103017e9cd8aa0c592a453bb8a28c59411ccafc308349af8af4b2871d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bismuth - chemistry</topic><topic>Elastic Modulus</topic><topic>Ferric Compounds - chemistry</topic><topic>Materials Testing - methods</topic><topic>Micro-Electrical-Mechanical Systems - methods</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Sensitivity and Specificity</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shuhong</creatorcontrib><creatorcontrib>Gannepalli, Anil</creatorcontrib><creatorcontrib>Chen, Qian Nataly</creatorcontrib><creatorcontrib>Liu, Yuanming</creatorcontrib><creatorcontrib>Zhou, Yichun</creatorcontrib><creatorcontrib>Proksch, Roger</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shuhong</au><au>Gannepalli, Anil</au><au>Chen, Qian Nataly</au><au>Liu, Yuanming</au><au>Zhou, Yichun</au><au>Proksch, Roger</au><au>Li, Jiangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2012-01-21</date><risdate>2012</risdate><volume>4</volume><issue>2</issue><spage>48</spage><epage>413</epage><pages>48-413</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO 3 nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects. We probe BiFeO 3 nanofiber and its dissipative domain switching quantitatively using high sensitivity dual frequency resonance tracking piezoresponse force microscopy.</abstract><cop>England</cop><pmid>22101512</pmid><doi>10.1039/c1nr11099c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2012-01, Vol.4 (2), p.48-413
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_22101512
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bismuth - chemistry
Elastic Modulus
Ferric Compounds - chemistry
Materials Testing - methods
Micro-Electrical-Mechanical Systems - methods
Microscopy, Atomic Force - methods
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Sensitivity and Specificity
Tensile Strength
title High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20quantitative%20piezoresponse%20force%20microscopy%20of%20BiFeO3%20nanofibers%20with%20dramatically%20enhanced%20sensitivity&rft.jtitle=Nanoscale&rft.au=Xie,%20Shuhong&rft.date=2012-01-21&rft.volume=4&rft.issue=2&rft.spage=48&rft.epage=413&rft.pages=48-413&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c1nr11099c&rft_dat=%3Cpubmed_rsc_p%3E22101512%3C/pubmed_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22101512&rfr_iscdi=true