Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli

Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2011-11, Vol.51 (10), p.1872
Hauptverfasser: Kumar, Ashutosh, Pandey, Alok K, Singh, Shashi S, Shanker, Rishi, Dhawan, Alok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1872
container_title Free radical biology & medicine
container_volume 51
creator Kumar, Ashutosh
Pandey, Alok K
Singh, Shashi S
Shanker, Rishi
Dhawan, Alok
description Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p
doi_str_mv 10.1016/j.freeradbiomed.2011.08.025
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_21920432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21920432</sourcerecordid><originalsourceid>FETCH-LOGICAL-p552-25e51a1e45e18381689b8073c88d473553272bc1229c42f3c7c0b7aab3b722ae3</originalsourceid><addsrcrecordid>eNo1kLtOwzAUQC0kREvhF5AlFhgS_IhrZ6xKeUgVXTqxVNf2TesqdaI4RXTi14l4TGc6ZziE3HKWc8anD_u86hA78DY0B_S5YJznzORMqDMy5kbLrFDldEQuU9ozxgolzQUZCV4KVkgxJl-LuA1xSKCn73FFIXq6Dqs7cU8jxKaFrg-uxkRD9EeHtPkMHvrwgTT1Hab0Izy-zaiHA2yR1gg-xC3tGzokB8PTjwA21KE_0aaii-R22AW3C0BdU4crcl5BnfD6jxOyflqs5y_ZcvX8Op8ts1YpkQmFigPHQiE30vCpKa1hWjpjfKGlUlJoYR0XonSFqKTTjlkNYKXVQgDKCbn5zbZHO3zatF04QHfa_I-Q3-a9Ytg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</creator><creatorcontrib>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</creatorcontrib><description>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p&lt;0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</description><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2011.08.025</identifier><identifier>PMID: 21920432</identifier><language>eng</language><publisher>United States</publisher><subject>Bacterial Proteins - metabolism ; Cell Survival - drug effects ; DNA Damage - drug effects ; DNA, Bacterial - metabolism ; Ecotoxicology ; Enzyme Activation - drug effects ; Escherichia coli - drug effects ; Escherichia coli - physiology ; Escherichia coli - ultrastructure ; Flow Cytometry ; Gene Expression Regulation, Bacterial - drug effects ; L-Lactate Dehydrogenase - metabolism ; Metal Nanoparticles - administration &amp; dosage ; Metal Nanoparticles - adverse effects ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Electron ; Oxidative Stress - drug effects ; Titanium - adverse effects ; Titanium - chemistry ; Titanium - metabolism ; Zinc Oxide - adverse effects ; Zinc Oxide - chemistry ; Zinc Oxide - metabolism</subject><ispartof>Free radical biology &amp; medicine, 2011-11, Vol.51 (10), p.1872</ispartof><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21920432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Alok K</creatorcontrib><creatorcontrib>Singh, Shashi S</creatorcontrib><creatorcontrib>Shanker, Rishi</creatorcontrib><creatorcontrib>Dhawan, Alok</creatorcontrib><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p&lt;0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</description><subject>Bacterial Proteins - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>DNA Damage - drug effects</subject><subject>DNA, Bacterial - metabolism</subject><subject>Ecotoxicology</subject><subject>Enzyme Activation - drug effects</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli - ultrastructure</subject><subject>Flow Cytometry</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Metal Nanoparticles - administration &amp; dosage</subject><subject>Metal Nanoparticles - adverse effects</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Electron</subject><subject>Oxidative Stress - drug effects</subject><subject>Titanium - adverse effects</subject><subject>Titanium - chemistry</subject><subject>Titanium - metabolism</subject><subject>Zinc Oxide - adverse effects</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc Oxide - metabolism</subject><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kLtOwzAUQC0kREvhF5AlFhgS_IhrZ6xKeUgVXTqxVNf2TesqdaI4RXTi14l4TGc6ZziE3HKWc8anD_u86hA78DY0B_S5YJznzORMqDMy5kbLrFDldEQuU9ozxgolzQUZCV4KVkgxJl-LuA1xSKCn73FFIXq6Dqs7cU8jxKaFrg-uxkRD9EeHtPkMHvrwgTT1Hab0Izy-zaiHA2yR1gg-xC3tGzokB8PTjwA21KE_0aaii-R22AW3C0BdU4crcl5BnfD6jxOyflqs5y_ZcvX8Op8ts1YpkQmFigPHQiE30vCpKa1hWjpjfKGlUlJoYR0XonSFqKTTjlkNYKXVQgDKCbn5zbZHO3zatF04QHfa_I-Q3-a9Ytg</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Kumar, Ashutosh</creator><creator>Pandey, Alok K</creator><creator>Singh, Shashi S</creator><creator>Shanker, Rishi</creator><creator>Dhawan, Alok</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20111115</creationdate><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><author>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p552-25e51a1e45e18381689b8073c88d473553272bc1229c42f3c7c0b7aab3b722ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>DNA Damage - drug effects</topic><topic>DNA, Bacterial - metabolism</topic><topic>Ecotoxicology</topic><topic>Enzyme Activation - drug effects</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli - ultrastructure</topic><topic>Flow Cytometry</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Metal Nanoparticles - administration &amp; dosage</topic><topic>Metal Nanoparticles - adverse effects</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Electron</topic><topic>Oxidative Stress - drug effects</topic><topic>Titanium - adverse effects</topic><topic>Titanium - chemistry</topic><topic>Titanium - metabolism</topic><topic>Zinc Oxide - adverse effects</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc Oxide - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Alok K</creatorcontrib><creatorcontrib>Singh, Shashi S</creatorcontrib><creatorcontrib>Shanker, Rishi</creatorcontrib><creatorcontrib>Dhawan, Alok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ashutosh</au><au>Pandey, Alok K</au><au>Singh, Shashi S</au><au>Shanker, Rishi</au><au>Dhawan, Alok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>51</volume><issue>10</issue><spage>1872</spage><pages>1872-</pages><eissn>1873-4596</eissn><abstract>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p&lt;0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</abstract><cop>United States</cop><pmid>21920432</pmid><doi>10.1016/j.freeradbiomed.2011.08.025</doi></addata></record>
fulltext fulltext
identifier EISSN: 1873-4596
ispartof Free radical biology & medicine, 2011-11, Vol.51 (10), p.1872
issn 1873-4596
language eng
recordid cdi_pubmed_primary_21920432
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacterial Proteins - metabolism
Cell Survival - drug effects
DNA Damage - drug effects
DNA, Bacterial - metabolism
Ecotoxicology
Enzyme Activation - drug effects
Escherichia coli - drug effects
Escherichia coli - physiology
Escherichia coli - ultrastructure
Flow Cytometry
Gene Expression Regulation, Bacterial - drug effects
L-Lactate Dehydrogenase - metabolism
Metal Nanoparticles - administration & dosage
Metal Nanoparticles - adverse effects
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microscopy, Electron
Oxidative Stress - drug effects
Titanium - adverse effects
Titanium - chemistry
Titanium - metabolism
Zinc Oxide - adverse effects
Zinc Oxide - chemistry
Zinc Oxide - metabolism
title Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20ZnO%20and%20TiO(2)%20nanoparticles%20induce%20oxidative%20stress%20and%20DNA%20damage%20leading%20to%20reduced%20viability%20of%20Escherichia%20coli&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Kumar,%20Ashutosh&rft.date=2011-11-15&rft.volume=51&rft.issue=10&rft.spage=1872&rft.pages=1872-&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2011.08.025&rft_dat=%3Cpubmed%3E21920432%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21920432&rfr_iscdi=true