Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli
Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environme...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2011-11, Vol.51 (10), p.1872 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1872 |
container_title | Free radical biology & medicine |
container_volume | 51 |
creator | Kumar, Ashutosh Pandey, Alok K Singh, Shashi S Shanker, Rishi Dhawan, Alok |
description | Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p |
doi_str_mv | 10.1016/j.freeradbiomed.2011.08.025 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_21920432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21920432</sourcerecordid><originalsourceid>FETCH-LOGICAL-p552-25e51a1e45e18381689b8073c88d473553272bc1229c42f3c7c0b7aab3b722ae3</originalsourceid><addsrcrecordid>eNo1kLtOwzAUQC0kREvhF5AlFhgS_IhrZ6xKeUgVXTqxVNf2TesqdaI4RXTi14l4TGc6ZziE3HKWc8anD_u86hA78DY0B_S5YJznzORMqDMy5kbLrFDldEQuU9ozxgolzQUZCV4KVkgxJl-LuA1xSKCn73FFIXq6Dqs7cU8jxKaFrg-uxkRD9EeHtPkMHvrwgTT1Hab0Izy-zaiHA2yR1gg-xC3tGzokB8PTjwA21KE_0aaii-R22AW3C0BdU4crcl5BnfD6jxOyflqs5y_ZcvX8Op8ts1YpkQmFigPHQiE30vCpKa1hWjpjfKGlUlJoYR0XonSFqKTTjlkNYKXVQgDKCbn5zbZHO3zatF04QHfa_I-Q3-a9Ytg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</creator><creatorcontrib>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</creatorcontrib><description>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p<0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</description><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2011.08.025</identifier><identifier>PMID: 21920432</identifier><language>eng</language><publisher>United States</publisher><subject>Bacterial Proteins - metabolism ; Cell Survival - drug effects ; DNA Damage - drug effects ; DNA, Bacterial - metabolism ; Ecotoxicology ; Enzyme Activation - drug effects ; Escherichia coli - drug effects ; Escherichia coli - physiology ; Escherichia coli - ultrastructure ; Flow Cytometry ; Gene Expression Regulation, Bacterial - drug effects ; L-Lactate Dehydrogenase - metabolism ; Metal Nanoparticles - administration & dosage ; Metal Nanoparticles - adverse effects ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Microscopy, Electron ; Oxidative Stress - drug effects ; Titanium - adverse effects ; Titanium - chemistry ; Titanium - metabolism ; Zinc Oxide - adverse effects ; Zinc Oxide - chemistry ; Zinc Oxide - metabolism</subject><ispartof>Free radical biology & medicine, 2011-11, Vol.51 (10), p.1872</ispartof><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21920432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Alok K</creatorcontrib><creatorcontrib>Singh, Shashi S</creatorcontrib><creatorcontrib>Shanker, Rishi</creatorcontrib><creatorcontrib>Dhawan, Alok</creatorcontrib><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p<0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</description><subject>Bacterial Proteins - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>DNA Damage - drug effects</subject><subject>DNA, Bacterial - metabolism</subject><subject>Ecotoxicology</subject><subject>Enzyme Activation - drug effects</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli - ultrastructure</subject><subject>Flow Cytometry</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Metal Nanoparticles - administration & dosage</subject><subject>Metal Nanoparticles - adverse effects</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Microscopy, Electron</subject><subject>Oxidative Stress - drug effects</subject><subject>Titanium - adverse effects</subject><subject>Titanium - chemistry</subject><subject>Titanium - metabolism</subject><subject>Zinc Oxide - adverse effects</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc Oxide - metabolism</subject><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kLtOwzAUQC0kREvhF5AlFhgS_IhrZ6xKeUgVXTqxVNf2TesqdaI4RXTi14l4TGc6ZziE3HKWc8anD_u86hA78DY0B_S5YJznzORMqDMy5kbLrFDldEQuU9ozxgolzQUZCV4KVkgxJl-LuA1xSKCn73FFIXq6Dqs7cU8jxKaFrg-uxkRD9EeHtPkMHvrwgTT1Hab0Izy-zaiHA2yR1gg-xC3tGzokB8PTjwA21KE_0aaii-R22AW3C0BdU4crcl5BnfD6jxOyflqs5y_ZcvX8Op8ts1YpkQmFigPHQiE30vCpKa1hWjpjfKGlUlJoYR0XonSFqKTTjlkNYKXVQgDKCbn5zbZHO3zatF04QHfa_I-Q3-a9Ytg</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Kumar, Ashutosh</creator><creator>Pandey, Alok K</creator><creator>Singh, Shashi S</creator><creator>Shanker, Rishi</creator><creator>Dhawan, Alok</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20111115</creationdate><title>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</title><author>Kumar, Ashutosh ; Pandey, Alok K ; Singh, Shashi S ; Shanker, Rishi ; Dhawan, Alok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p552-25e51a1e45e18381689b8073c88d473553272bc1229c42f3c7c0b7aab3b722ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>DNA Damage - drug effects</topic><topic>DNA, Bacterial - metabolism</topic><topic>Ecotoxicology</topic><topic>Enzyme Activation - drug effects</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli - ultrastructure</topic><topic>Flow Cytometry</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Metal Nanoparticles - administration & dosage</topic><topic>Metal Nanoparticles - adverse effects</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Microscopy, Electron</topic><topic>Oxidative Stress - drug effects</topic><topic>Titanium - adverse effects</topic><topic>Titanium - chemistry</topic><topic>Titanium - metabolism</topic><topic>Zinc Oxide - adverse effects</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc Oxide - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Alok K</creatorcontrib><creatorcontrib>Singh, Shashi S</creatorcontrib><creatorcontrib>Shanker, Rishi</creatorcontrib><creatorcontrib>Dhawan, Alok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ashutosh</au><au>Pandey, Alok K</au><au>Singh, Shashi S</au><au>Shanker, Rishi</au><au>Dhawan, Alok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>51</volume><issue>10</issue><spage>1872</spage><pages>1872-</pages><eissn>1873-4596</eissn><abstract>Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (p<0.05) DNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs.</abstract><cop>United States</cop><pmid>21920432</pmid><doi>10.1016/j.freeradbiomed.2011.08.025</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1873-4596 |
ispartof | Free radical biology & medicine, 2011-11, Vol.51 (10), p.1872 |
issn | 1873-4596 |
language | eng |
recordid | cdi_pubmed_primary_21920432 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bacterial Proteins - metabolism Cell Survival - drug effects DNA Damage - drug effects DNA, Bacterial - metabolism Ecotoxicology Enzyme Activation - drug effects Escherichia coli - drug effects Escherichia coli - physiology Escherichia coli - ultrastructure Flow Cytometry Gene Expression Regulation, Bacterial - drug effects L-Lactate Dehydrogenase - metabolism Metal Nanoparticles - administration & dosage Metal Nanoparticles - adverse effects Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microscopy, Electron Oxidative Stress - drug effects Titanium - adverse effects Titanium - chemistry Titanium - metabolism Zinc Oxide - adverse effects Zinc Oxide - chemistry Zinc Oxide - metabolism |
title | Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20ZnO%20and%20TiO(2)%20nanoparticles%20induce%20oxidative%20stress%20and%20DNA%20damage%20leading%20to%20reduced%20viability%20of%20Escherichia%20coli&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Kumar,%20Ashutosh&rft.date=2011-11-15&rft.volume=51&rft.issue=10&rft.spage=1872&rft.pages=1872-&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2011.08.025&rft_dat=%3Cpubmed%3E21920432%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21920432&rfr_iscdi=true |