Metabolic state of glioma stem cells and nontumorigenic cells

Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (38), p.16062-16067
Hauptverfasser: Vlashi, Erina, Lagadec, Chann, Vergnes, Laurent, Matsutani, Tomoo, Masui, Kenta, Poulou, Maria, Popescu, Ruxandra, Della Donna, Lorenza, Evers, Patrick, Dekmezian, Carmen, Reue, Karen, Christofk, Heather, Mischel, Paul S, Pajonk, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16067
container_issue 38
container_start_page 16062
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Vlashi, Erina
Lagadec, Chann
Vergnes, Laurent
Matsutani, Tomoo
Masui, Kenta
Poulou, Maria
Popescu, Ruxandra
Della Donna, Lorenza
Evers, Patrick
Dekmezian, Carmen
Reue, Karen
Christofk, Heather
Mischel, Paul S
Pajonk, Frank
description Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.
doi_str_mv 10.1073/pnas.1106704108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21900605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352394</jstor_id><sourcerecordid>41352394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</originalsourceid><addsrcrecordid>eNqFkr2P1DAQxS0E4paDmgqIqGhyN2M73nEBEjrxJR2igKstx7GXrJJ4sRMk_nu87LIHNFSW9X7zNDNvGHuMcIGwFpe7yeYLRFBrkAh0h60QNNZKarjLVgB8XZPk8ow9yHkLALohuM_OOGoABc2KvfzoZ9vGoXdVnu3sqxiqzdDH0Za_HyvnhyFXduqqKU7zMsbUb_xU6F_CQ3Yv2CH7R8f3nN28ffPl6n19_endh6vX17VTnM-1dl44rTogTl4Hjb4D2SogVDI06NaoAlnvQGgC2fGmCySpFUEGdC124py9Ovjulnb0nfPTnOxgdqkfbfphou3N38rUfzWb-N0IXGuQohi8OBqk-G3xeTZjn_cj2MnHJRuuqWlKO0T_RcuChSStRVPQ5_-g27ikqWzCUIE4B44FujxALsWckw-nthHMPkSzD9Hchlgqnv457Yn_nVoBqiOwr7y1IyPIoALFC_LkgGzzHNOJkSgaLrQs-rODHmw0dpP6bG4-c0BZjoRAkxI_ARDItJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893422021</pqid></control><display><type>article</type><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</creator><creatorcontrib>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</creatorcontrib><description>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1106704108</identifier><identifier>PMID: 21900605</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidification ; adenosine triphosphate ; Adenosine Triphosphate - metabolism ; ATP ; Biological Sciences ; Blotting, Western ; Brain tumors ; Cancer ; Cell cycle ; Cell Line, Tumor ; Cell lines ; Cellular differentiation ; Cellular metabolism ; Clone Cells - metabolism ; Deoxyglucose - pharmacology ; Emissions ; energy ; Energy Metabolism ; Glioma ; Glioma - metabolism ; Glioma - pathology ; Glioma cells ; Glucose ; Glucose - metabolism ; Glucose - pharmacokinetics ; Glycolysis ; Glycolysis - drug effects ; Humans ; image analysis ; imaging ; Immunohistochemistry ; Lactates ; Lactates - metabolism ; Lactic acid ; Metabolic pathways ; Metabolism ; Mitochondria ; neoplasms ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Oligomycins - pharmacology ; Oxidative phosphorylation ; Oxygen Consumption ; Positron emission tomography ; Positron-Emission Tomography - methods ; Progenitor cells ; Progeny ; Proteasome Endopeptidase Complex - metabolism ; Pyruvate kinase ; Reactive Oxygen Species - metabolism ; regrowth ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism ; Tissue Array Analysis ; Tumors ; Uncoupling Agents - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.16062-16067</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 20, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</citedby><cites>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352394$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352394$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21900605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vlashi, Erina</creatorcontrib><creatorcontrib>Lagadec, Chann</creatorcontrib><creatorcontrib>Vergnes, Laurent</creatorcontrib><creatorcontrib>Matsutani, Tomoo</creatorcontrib><creatorcontrib>Masui, Kenta</creatorcontrib><creatorcontrib>Poulou, Maria</creatorcontrib><creatorcontrib>Popescu, Ruxandra</creatorcontrib><creatorcontrib>Della Donna, Lorenza</creatorcontrib><creatorcontrib>Evers, Patrick</creatorcontrib><creatorcontrib>Dekmezian, Carmen</creatorcontrib><creatorcontrib>Reue, Karen</creatorcontrib><creatorcontrib>Christofk, Heather</creatorcontrib><creatorcontrib>Mischel, Paul S</creatorcontrib><creatorcontrib>Pajonk, Frank</creatorcontrib><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</description><subject>Acidification</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cellular differentiation</subject><subject>Cellular metabolism</subject><subject>Clone Cells - metabolism</subject><subject>Deoxyglucose - pharmacology</subject><subject>Emissions</subject><subject>energy</subject><subject>Energy Metabolism</subject><subject>Glioma</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma cells</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacokinetics</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Humans</subject><subject>image analysis</subject><subject>imaging</subject><subject>Immunohistochemistry</subject><subject>Lactates</subject><subject>Lactates - metabolism</subject><subject>Lactic acid</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>neoplasms</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Oligomycins - pharmacology</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen Consumption</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Progenitor cells</subject><subject>Progeny</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Pyruvate kinase</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>regrowth</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Tissue Array Analysis</subject><subject>Tumors</subject><subject>Uncoupling Agents - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkr2P1DAQxS0E4paDmgqIqGhyN2M73nEBEjrxJR2igKstx7GXrJJ4sRMk_nu87LIHNFSW9X7zNDNvGHuMcIGwFpe7yeYLRFBrkAh0h60QNNZKarjLVgB8XZPk8ow9yHkLALohuM_OOGoABc2KvfzoZ9vGoXdVnu3sqxiqzdDH0Za_HyvnhyFXduqqKU7zMsbUb_xU6F_CQ3Yv2CH7R8f3nN28ffPl6n19_endh6vX17VTnM-1dl44rTogTl4Hjb4D2SogVDI06NaoAlnvQGgC2fGmCySpFUEGdC124py9Ovjulnb0nfPTnOxgdqkfbfphou3N38rUfzWb-N0IXGuQohi8OBqk-G3xeTZjn_cj2MnHJRuuqWlKO0T_RcuChSStRVPQ5_-g27ikqWzCUIE4B44FujxALsWckw-nthHMPkSzD9Hchlgqnv457Yn_nVoBqiOwr7y1IyPIoALFC_LkgGzzHNOJkSgaLrQs-rODHmw0dpP6bG4-c0BZjoRAkxI_ARDItJo</recordid><startdate>20110920</startdate><enddate>20110920</enddate><creator>Vlashi, Erina</creator><creator>Lagadec, Chann</creator><creator>Vergnes, Laurent</creator><creator>Matsutani, Tomoo</creator><creator>Masui, Kenta</creator><creator>Poulou, Maria</creator><creator>Popescu, Ruxandra</creator><creator>Della Donna, Lorenza</creator><creator>Evers, Patrick</creator><creator>Dekmezian, Carmen</creator><creator>Reue, Karen</creator><creator>Christofk, Heather</creator><creator>Mischel, Paul S</creator><creator>Pajonk, Frank</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20110920</creationdate><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><author>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acidification</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cellular differentiation</topic><topic>Cellular metabolism</topic><topic>Clone Cells - metabolism</topic><topic>Deoxyglucose - pharmacology</topic><topic>Emissions</topic><topic>energy</topic><topic>Energy Metabolism</topic><topic>Glioma</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma cells</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacokinetics</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Humans</topic><topic>image analysis</topic><topic>imaging</topic><topic>Immunohistochemistry</topic><topic>Lactates</topic><topic>Lactates - metabolism</topic><topic>Lactic acid</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>neoplasms</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Oligomycins - pharmacology</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen Consumption</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Progenitor cells</topic><topic>Progeny</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Pyruvate kinase</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>regrowth</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Tissue Array Analysis</topic><topic>Tumors</topic><topic>Uncoupling Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlashi, Erina</creatorcontrib><creatorcontrib>Lagadec, Chann</creatorcontrib><creatorcontrib>Vergnes, Laurent</creatorcontrib><creatorcontrib>Matsutani, Tomoo</creatorcontrib><creatorcontrib>Masui, Kenta</creatorcontrib><creatorcontrib>Poulou, Maria</creatorcontrib><creatorcontrib>Popescu, Ruxandra</creatorcontrib><creatorcontrib>Della Donna, Lorenza</creatorcontrib><creatorcontrib>Evers, Patrick</creatorcontrib><creatorcontrib>Dekmezian, Carmen</creatorcontrib><creatorcontrib>Reue, Karen</creatorcontrib><creatorcontrib>Christofk, Heather</creatorcontrib><creatorcontrib>Mischel, Paul S</creatorcontrib><creatorcontrib>Pajonk, Frank</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlashi, Erina</au><au>Lagadec, Chann</au><au>Vergnes, Laurent</au><au>Matsutani, Tomoo</au><au>Masui, Kenta</au><au>Poulou, Maria</au><au>Popescu, Ruxandra</au><au>Della Donna, Lorenza</au><au>Evers, Patrick</au><au>Dekmezian, Carmen</au><au>Reue, Karen</au><au>Christofk, Heather</au><au>Mischel, Paul S</au><au>Pajonk, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic state of glioma stem cells and nontumorigenic cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-20</date><risdate>2011</risdate><volume>108</volume><issue>38</issue><spage>16062</spage><epage>16067</epage><pages>16062-16067</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21900605</pmid><doi>10.1073/pnas.1106704108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.16062-16067
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_21900605
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acidification
adenosine triphosphate
Adenosine Triphosphate - metabolism
ATP
Biological Sciences
Blotting, Western
Brain tumors
Cancer
Cell cycle
Cell Line, Tumor
Cell lines
Cellular differentiation
Cellular metabolism
Clone Cells - metabolism
Deoxyglucose - pharmacology
Emissions
energy
Energy Metabolism
Glioma
Glioma - metabolism
Glioma - pathology
Glioma cells
Glucose
Glucose - metabolism
Glucose - pharmacokinetics
Glycolysis
Glycolysis - drug effects
Humans
image analysis
imaging
Immunohistochemistry
Lactates
Lactates - metabolism
Lactic acid
Metabolic pathways
Metabolism
Mitochondria
neoplasms
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Oligomycins - pharmacology
Oxidative phosphorylation
Oxygen Consumption
Positron emission tomography
Positron-Emission Tomography - methods
Progenitor cells
Progeny
Proteasome Endopeptidase Complex - metabolism
Pyruvate kinase
Reactive Oxygen Species - metabolism
regrowth
Stem cells
Stem Cells - drug effects
Stem Cells - metabolism
Tissue Array Analysis
Tumors
Uncoupling Agents - pharmacology
title Metabolic state of glioma stem cells and nontumorigenic cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20state%20of%20glioma%20stem%20cells%20and%20nontumorigenic%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vlashi,%20Erina&rft.date=2011-09-20&rft.volume=108&rft.issue=38&rft.spage=16062&rft.epage=16067&rft.pages=16062-16067&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1106704108&rft_dat=%3Cjstor_pubme%3E41352394%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893422021&rft_id=info:pmid/21900605&rft_jstor_id=41352394&rfr_iscdi=true