Metabolic state of glioma stem cells and nontumorigenic cells
Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose meta...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (38), p.16062-16067 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16067 |
---|---|
container_issue | 38 |
container_start_page | 16062 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Vlashi, Erina Lagadec, Chann Vergnes, Laurent Matsutani, Tomoo Masui, Kenta Poulou, Maria Popescu, Ruxandra Della Donna, Lorenza Evers, Patrick Dekmezian, Carmen Reue, Karen Christofk, Heather Mischel, Paul S Pajonk, Frank |
description | Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs. |
doi_str_mv | 10.1073/pnas.1106704108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21900605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352394</jstor_id><sourcerecordid>41352394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</originalsourceid><addsrcrecordid>eNqFkr2P1DAQxS0E4paDmgqIqGhyN2M73nEBEjrxJR2igKstx7GXrJJ4sRMk_nu87LIHNFSW9X7zNDNvGHuMcIGwFpe7yeYLRFBrkAh0h60QNNZKarjLVgB8XZPk8ow9yHkLALohuM_OOGoABc2KvfzoZ9vGoXdVnu3sqxiqzdDH0Za_HyvnhyFXduqqKU7zMsbUb_xU6F_CQ3Yv2CH7R8f3nN28ffPl6n19_endh6vX17VTnM-1dl44rTogTl4Hjb4D2SogVDI06NaoAlnvQGgC2fGmCySpFUEGdC124py9Ovjulnb0nfPTnOxgdqkfbfphou3N38rUfzWb-N0IXGuQohi8OBqk-G3xeTZjn_cj2MnHJRuuqWlKO0T_RcuChSStRVPQ5_-g27ikqWzCUIE4B44FujxALsWckw-nthHMPkSzD9Hchlgqnv457Yn_nVoBqiOwr7y1IyPIoALFC_LkgGzzHNOJkSgaLrQs-rODHmw0dpP6bG4-c0BZjoRAkxI_ARDItJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893422021</pqid></control><display><type>article</type><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</creator><creatorcontrib>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</creatorcontrib><description>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1106704108</identifier><identifier>PMID: 21900605</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidification ; adenosine triphosphate ; Adenosine Triphosphate - metabolism ; ATP ; Biological Sciences ; Blotting, Western ; Brain tumors ; Cancer ; Cell cycle ; Cell Line, Tumor ; Cell lines ; Cellular differentiation ; Cellular metabolism ; Clone Cells - metabolism ; Deoxyglucose - pharmacology ; Emissions ; energy ; Energy Metabolism ; Glioma ; Glioma - metabolism ; Glioma - pathology ; Glioma cells ; Glucose ; Glucose - metabolism ; Glucose - pharmacokinetics ; Glycolysis ; Glycolysis - drug effects ; Humans ; image analysis ; imaging ; Immunohistochemistry ; Lactates ; Lactates - metabolism ; Lactic acid ; Metabolic pathways ; Metabolism ; Mitochondria ; neoplasms ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - metabolism ; Oligomycins - pharmacology ; Oxidative phosphorylation ; Oxygen Consumption ; Positron emission tomography ; Positron-Emission Tomography - methods ; Progenitor cells ; Progeny ; Proteasome Endopeptidase Complex - metabolism ; Pyruvate kinase ; Reactive Oxygen Species - metabolism ; regrowth ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism ; Tissue Array Analysis ; Tumors ; Uncoupling Agents - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.16062-16067</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 20, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</citedby><cites>FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352394$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352394$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21900605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vlashi, Erina</creatorcontrib><creatorcontrib>Lagadec, Chann</creatorcontrib><creatorcontrib>Vergnes, Laurent</creatorcontrib><creatorcontrib>Matsutani, Tomoo</creatorcontrib><creatorcontrib>Masui, Kenta</creatorcontrib><creatorcontrib>Poulou, Maria</creatorcontrib><creatorcontrib>Popescu, Ruxandra</creatorcontrib><creatorcontrib>Della Donna, Lorenza</creatorcontrib><creatorcontrib>Evers, Patrick</creatorcontrib><creatorcontrib>Dekmezian, Carmen</creatorcontrib><creatorcontrib>Reue, Karen</creatorcontrib><creatorcontrib>Christofk, Heather</creatorcontrib><creatorcontrib>Mischel, Paul S</creatorcontrib><creatorcontrib>Pajonk, Frank</creatorcontrib><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</description><subject>Acidification</subject><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cellular differentiation</subject><subject>Cellular metabolism</subject><subject>Clone Cells - metabolism</subject><subject>Deoxyglucose - pharmacology</subject><subject>Emissions</subject><subject>energy</subject><subject>Energy Metabolism</subject><subject>Glioma</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma cells</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacokinetics</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Humans</subject><subject>image analysis</subject><subject>imaging</subject><subject>Immunohistochemistry</subject><subject>Lactates</subject><subject>Lactates - metabolism</subject><subject>Lactic acid</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>neoplasms</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Oligomycins - pharmacology</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen Consumption</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Progenitor cells</subject><subject>Progeny</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Pyruvate kinase</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>regrowth</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Tissue Array Analysis</subject><subject>Tumors</subject><subject>Uncoupling Agents - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkr2P1DAQxS0E4paDmgqIqGhyN2M73nEBEjrxJR2igKstx7GXrJJ4sRMk_nu87LIHNFSW9X7zNDNvGHuMcIGwFpe7yeYLRFBrkAh0h60QNNZKarjLVgB8XZPk8ow9yHkLALohuM_OOGoABc2KvfzoZ9vGoXdVnu3sqxiqzdDH0Za_HyvnhyFXduqqKU7zMsbUb_xU6F_CQ3Yv2CH7R8f3nN28ffPl6n19_endh6vX17VTnM-1dl44rTogTl4Hjb4D2SogVDI06NaoAlnvQGgC2fGmCySpFUEGdC124py9Ovjulnb0nfPTnOxgdqkfbfphou3N38rUfzWb-N0IXGuQohi8OBqk-G3xeTZjn_cj2MnHJRuuqWlKO0T_RcuChSStRVPQ5_-g27ikqWzCUIE4B44FujxALsWckw-nthHMPkSzD9Hchlgqnv457Yn_nVoBqiOwr7y1IyPIoALFC_LkgGzzHNOJkSgaLrQs-rODHmw0dpP6bG4-c0BZjoRAkxI_ARDItJo</recordid><startdate>20110920</startdate><enddate>20110920</enddate><creator>Vlashi, Erina</creator><creator>Lagadec, Chann</creator><creator>Vergnes, Laurent</creator><creator>Matsutani, Tomoo</creator><creator>Masui, Kenta</creator><creator>Poulou, Maria</creator><creator>Popescu, Ruxandra</creator><creator>Della Donna, Lorenza</creator><creator>Evers, Patrick</creator><creator>Dekmezian, Carmen</creator><creator>Reue, Karen</creator><creator>Christofk, Heather</creator><creator>Mischel, Paul S</creator><creator>Pajonk, Frank</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20110920</creationdate><title>Metabolic state of glioma stem cells and nontumorigenic cells</title><author>Vlashi, Erina ; Lagadec, Chann ; Vergnes, Laurent ; Matsutani, Tomoo ; Masui, Kenta ; Poulou, Maria ; Popescu, Ruxandra ; Della Donna, Lorenza ; Evers, Patrick ; Dekmezian, Carmen ; Reue, Karen ; Christofk, Heather ; Mischel, Paul S ; Pajonk, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-9ce3c96d0828e9f91ed04b608164f51c716f8aec039804d25df848b3f4f1cb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acidification</topic><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cellular differentiation</topic><topic>Cellular metabolism</topic><topic>Clone Cells - metabolism</topic><topic>Deoxyglucose - pharmacology</topic><topic>Emissions</topic><topic>energy</topic><topic>Energy Metabolism</topic><topic>Glioma</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma cells</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacokinetics</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Humans</topic><topic>image analysis</topic><topic>imaging</topic><topic>Immunohistochemistry</topic><topic>Lactates</topic><topic>Lactates - metabolism</topic><topic>Lactic acid</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>neoplasms</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Oligomycins - pharmacology</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen Consumption</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Progenitor cells</topic><topic>Progeny</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Pyruvate kinase</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>regrowth</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Tissue Array Analysis</topic><topic>Tumors</topic><topic>Uncoupling Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlashi, Erina</creatorcontrib><creatorcontrib>Lagadec, Chann</creatorcontrib><creatorcontrib>Vergnes, Laurent</creatorcontrib><creatorcontrib>Matsutani, Tomoo</creatorcontrib><creatorcontrib>Masui, Kenta</creatorcontrib><creatorcontrib>Poulou, Maria</creatorcontrib><creatorcontrib>Popescu, Ruxandra</creatorcontrib><creatorcontrib>Della Donna, Lorenza</creatorcontrib><creatorcontrib>Evers, Patrick</creatorcontrib><creatorcontrib>Dekmezian, Carmen</creatorcontrib><creatorcontrib>Reue, Karen</creatorcontrib><creatorcontrib>Christofk, Heather</creatorcontrib><creatorcontrib>Mischel, Paul S</creatorcontrib><creatorcontrib>Pajonk, Frank</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlashi, Erina</au><au>Lagadec, Chann</au><au>Vergnes, Laurent</au><au>Matsutani, Tomoo</au><au>Masui, Kenta</au><au>Poulou, Maria</au><au>Popescu, Ruxandra</au><au>Della Donna, Lorenza</au><au>Evers, Patrick</au><au>Dekmezian, Carmen</au><au>Reue, Karen</au><au>Christofk, Heather</au><au>Mischel, Paul S</au><au>Pajonk, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic state of glioma stem cells and nontumorigenic cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-20</date><risdate>2011</risdate><volume>108</volume><issue>38</issue><spage>16062</spage><epage>16067</epage><pages>16062-16067</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21900605</pmid><doi>10.1073/pnas.1106704108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.16062-16067 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_21900605 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acidification adenosine triphosphate Adenosine Triphosphate - metabolism ATP Biological Sciences Blotting, Western Brain tumors Cancer Cell cycle Cell Line, Tumor Cell lines Cellular differentiation Cellular metabolism Clone Cells - metabolism Deoxyglucose - pharmacology Emissions energy Energy Metabolism Glioma Glioma - metabolism Glioma - pathology Glioma cells Glucose Glucose - metabolism Glucose - pharmacokinetics Glycolysis Glycolysis - drug effects Humans image analysis imaging Immunohistochemistry Lactates Lactates - metabolism Lactic acid Metabolic pathways Metabolism Mitochondria neoplasms Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Oligomycins - pharmacology Oxidative phosphorylation Oxygen Consumption Positron emission tomography Positron-Emission Tomography - methods Progenitor cells Progeny Proteasome Endopeptidase Complex - metabolism Pyruvate kinase Reactive Oxygen Species - metabolism regrowth Stem cells Stem Cells - drug effects Stem Cells - metabolism Tissue Array Analysis Tumors Uncoupling Agents - pharmacology |
title | Metabolic state of glioma stem cells and nontumorigenic cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20state%20of%20glioma%20stem%20cells%20and%20nontumorigenic%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vlashi,%20Erina&rft.date=2011-09-20&rft.volume=108&rft.issue=38&rft.spage=16062&rft.epage=16067&rft.pages=16062-16067&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1106704108&rft_dat=%3Cjstor_pubme%3E41352394%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893422021&rft_id=info:pmid/21900605&rft_jstor_id=41352394&rfr_iscdi=true |