First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys

Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2009-09, Vol.21 (39), p.395503-395503 (8)
Hauptverfasser: Ivashchenko, V I, Turchi, P E A, Shevchenko, V I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395503 (8)
container_issue 39
container_start_page 395503
container_title Journal of physics. Condensed matter
container_volume 21
creator Ivashchenko, V I
Turchi, P E A
Shevchenko, V I
description Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of composition were performed with an ab initio pseudo-potential method. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2-0.4%). The predicted formation energies indicate that the ZrC(x)N(1-x) alloys are stable even at 0 K in the whole concentration range, while the homogeneous Zr(x)Ti(1-x)C alloys can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into cubic domains takes place over a wide range of compositions and temperatures. For the carbonitrides, the shear modulus G, the Young's modulus E and the Poisson ratio σ reach an extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear modulus C(44) that corresponds to a valence-electron concentration in the range of 8.2-8.3. This extremal behavior finds its origin in the response of the band structure of ZrC(x)N(1-x) alloys for 0≤x≤1, caused by the monoclinic strain that determines this shear modulus. In contrast, the other shear modulus [Formula: see text] does not exhibit any extremum over the whole composition range. These results are in contrast with those for Zr-Ti carbides for which the elastic properties gradually increase from ZrC to TiC.
doi_str_mv 10.1088/0953-8984/21/39/395503
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21832391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883310026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-631b407cb6e9c2b48cd1039de59b6f5f36f64adc1a52f055a42d26754b774e063</originalsourceid><addsrcrecordid>eNqF0d1KBCEYBmCJorafW4g5iY6m9X_0MJa2gqiTgohAHEfBcHcmnT3Ys-6hO-xKcpttCQoCQdTnU3k_AI4RPENQiDGUjJRCCjrGaExkHoxBsgVGiHBUcioet8Fog_bAfkovEEIqCN0FexgJgolEI_A89TH1ZRf93Pgu2FSkftEsi9YVNujUe1PoeZM3de2D75dFF9vOxt5nmc1TnHy8vT_F2y81rO79pNAhtMt0CHacDskerecD8DC9uJ9clTd3l9eT85vSUIb7khNUU1iZmltpcE2FaRAksrFM1twxR7jjVDcGaYYdZExT3GBeMVpXFbWQkwNwOtybP_e6sKlXM5-MDUHPbbtISghCEIT4f1lRgjGmjGTJB2lim1K0TuWMZjouFYJq1QK1Slet0lUYKSLV0IJceLx-YlHPbLMp-848g5M10Mno4KLO0acfTnKY48iuHJxvu83p34-qrnHZo9_-n89-ArZLrAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743222453</pqid></control><display><type>article</type><title>First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ivashchenko, V I ; Turchi, P E A ; Shevchenko, V I</creator><creatorcontrib>Ivashchenko, V I ; Turchi, P E A ; Shevchenko, V I</creatorcontrib><description>Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of composition were performed with an ab initio pseudo-potential method. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2-0.4%). The predicted formation energies indicate that the ZrC(x)N(1-x) alloys are stable even at 0 K in the whole concentration range, while the homogeneous Zr(x)Ti(1-x)C alloys can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into cubic domains takes place over a wide range of compositions and temperatures. For the carbonitrides, the shear modulus G, the Young's modulus E and the Poisson ratio σ reach an extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear modulus C(44) that corresponds to a valence-electron concentration in the range of 8.2-8.3. This extremal behavior finds its origin in the response of the band structure of ZrC(x)N(1-x) alloys for 0≤x≤1, caused by the monoclinic strain that determines this shear modulus. In contrast, the other shear modulus [Formula: see text] does not exhibit any extremum over the whole composition range. These results are in contrast with those for Zr-Ti carbides for which the elastic properties gradually increase from ZrC to TiC.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/21/39/395503</identifier><identifier>PMID: 21832391</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Elasticity, elastic constants ; Electron states ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Methods of electronic structure calculations ; Physics ; Solubility, segregation, and mixing; phase separation</subject><ispartof>Journal of physics. Condensed matter, 2009-09, Vol.21 (39), p.395503-395503 (8)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-631b407cb6e9c2b48cd1039de59b6f5f36f64adc1a52f055a42d26754b774e063</citedby><cites>FETCH-LOGICAL-c452t-631b407cb6e9c2b48cd1039de59b6f5f36f64adc1a52f055a42d26754b774e063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/21/39/395503/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21960407$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21832391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivashchenko, V I</creatorcontrib><creatorcontrib>Turchi, P E A</creatorcontrib><creatorcontrib>Shevchenko, V I</creatorcontrib><title>First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of composition were performed with an ab initio pseudo-potential method. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2-0.4%). The predicted formation energies indicate that the ZrC(x)N(1-x) alloys are stable even at 0 K in the whole concentration range, while the homogeneous Zr(x)Ti(1-x)C alloys can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into cubic domains takes place over a wide range of compositions and temperatures. For the carbonitrides, the shear modulus G, the Young's modulus E and the Poisson ratio σ reach an extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear modulus C(44) that corresponds to a valence-electron concentration in the range of 8.2-8.3. This extremal behavior finds its origin in the response of the band structure of ZrC(x)N(1-x) alloys for 0≤x≤1, caused by the monoclinic strain that determines this shear modulus. In contrast, the other shear modulus [Formula: see text] does not exhibit any extremum over the whole composition range. These results are in contrast with those for Zr-Ti carbides for which the elastic properties gradually increase from ZrC to TiC.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Elasticity, elastic constants</subject><subject>Electron states</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Solubility, segregation, and mixing; phase separation</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqF0d1KBCEYBmCJorafW4g5iY6m9X_0MJa2gqiTgohAHEfBcHcmnT3Ys-6hO-xKcpttCQoCQdTnU3k_AI4RPENQiDGUjJRCCjrGaExkHoxBsgVGiHBUcioet8Fog_bAfkovEEIqCN0FexgJgolEI_A89TH1ZRf93Pgu2FSkftEsi9YVNujUe1PoeZM3de2D75dFF9vOxt5nmc1TnHy8vT_F2y81rO79pNAhtMt0CHacDskerecD8DC9uJ9clTd3l9eT85vSUIb7khNUU1iZmltpcE2FaRAksrFM1twxR7jjVDcGaYYdZExT3GBeMVpXFbWQkwNwOtybP_e6sKlXM5-MDUHPbbtISghCEIT4f1lRgjGmjGTJB2lim1K0TuWMZjouFYJq1QK1Slet0lUYKSLV0IJceLx-YlHPbLMp-848g5M10Mno4KLO0acfTnKY48iuHJxvu83p34-qrnHZo9_-n89-ArZLrAw</recordid><startdate>20090930</startdate><enddate>20090930</enddate><creator>Ivashchenko, V I</creator><creator>Turchi, P E A</creator><creator>Shevchenko, V I</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090930</creationdate><title>First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys</title><author>Ivashchenko, V I ; Turchi, P E A ; Shevchenko, V I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-631b407cb6e9c2b48cd1039de59b6f5f36f64adc1a52f055a42d26754b774e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Elasticity, elastic constants</topic><topic>Electron states</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Solubility, segregation, and mixing; phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivashchenko, V I</creatorcontrib><creatorcontrib>Turchi, P E A</creatorcontrib><creatorcontrib>Shevchenko, V I</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivashchenko, V I</au><au>Turchi, P E A</au><au>Shevchenko, V I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2009-09-30</date><risdate>2009</risdate><volume>21</volume><issue>39</issue><spage>395503</spage><epage>395503 (8)</epage><pages>395503-395503 (8)</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of composition were performed with an ab initio pseudo-potential method. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2-0.4%). The predicted formation energies indicate that the ZrC(x)N(1-x) alloys are stable even at 0 K in the whole concentration range, while the homogeneous Zr(x)Ti(1-x)C alloys can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into cubic domains takes place over a wide range of compositions and temperatures. For the carbonitrides, the shear modulus G, the Young's modulus E and the Poisson ratio σ reach an extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear modulus C(44) that corresponds to a valence-electron concentration in the range of 8.2-8.3. This extremal behavior finds its origin in the response of the band structure of ZrC(x)N(1-x) alloys for 0≤x≤1, caused by the monoclinic strain that determines this shear modulus. In contrast, the other shear modulus [Formula: see text] does not exhibit any extremum over the whole composition range. These results are in contrast with those for Zr-Ti carbides for which the elastic properties gradually increase from ZrC to TiC.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21832391</pmid><doi>10.1088/0953-8984/21/39/395503</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2009-09, Vol.21 (39), p.395503-395503 (8)
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_21832391
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Elasticity, elastic constants
Electron states
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Methods of electronic structure calculations
Physics
Solubility, segregation, and mixing
phase separation
title First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20of%20elastic%20and%20stability%20properties%20of%20ZrC%E2%80%93ZrN%20and%20ZrC%E2%80%93TiC%20alloys&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Ivashchenko,%20V%20I&rft.date=2009-09-30&rft.volume=21&rft.issue=39&rft.spage=395503&rft.epage=395503%20(8)&rft.pages=395503-395503%20(8)&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/21/39/395503&rft_dat=%3Cproquest_pubme%3E883310026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743222453&rft_id=info:pmid/21832391&rfr_iscdi=true