Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes
CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (32), p.13230-13235 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13235 |
---|---|
container_issue | 32 |
container_start_page | 13230 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Garcia-Alles, Luis F Giacometti, Gaelle Versluis, Cees Maveyraud, Laurent de Paepe, Diane Guiard, Julie Tranier, Samuel Gilleron, Martine Prandi, Jacques Hanau, Daniel Heck, Albert J.R Mori, Lucia De Libero, Gennaro Puzo, Germain Mourey, Lionel de la Salle, Henri |
description | CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b–antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded. |
doi_str_mv | 10.1073/pnas.1105627108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21788486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979173</jstor_id><sourcerecordid>27979173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-8ee26d8f2b70b3a585c63d80d2702fbe89712b671bb0b400cec1889168917c8a3</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhSMEotvCmRNgcUEc0s7YSexckKotUKSVONCeLceZ7GaVjRc7WdF_j6MsXejBsuT53hvNPCfJG4RLBCmu9r0Jl4iQF1wiqGfJAqHEtMhKeJ4sALhMVcazs-Q8hC0AlLmCl8kZR6lUpopFcrf0D2EwHQuDH-0wemKuYZtxZ3q2vEFing5kusAMW3vnDsTC2A5Us8Z51rX7tk7pt92Yfk1s752lECi8Sl40UUOvj_dFcv_1y93yNl39-PZ9eb1Kbc6zIVVEvKhVwysJlTC5ym0hagU1l8CbilQpkVeFxKqCKgOwZFGpEot4pFVGXCSfZ9_9WO2ottQP3nR679ud8Q_amVb_X-nbjV67gxaYF6jyaPBpNtg8kd1er_T0BgJACJkfMLIfj828-zVSGPSuDZa6zvTkxqCVEgLKMp9cPzwht270fdzEBIHEXKgIXc2Q9S4ET81jfwQ9ZaunbPUp26h49--0j_zfMCPAjsCkPNkpLbhGwQVE5O2MbMPg_MlCljLuVMT6-7neGKfN2rdB3__kgEX8SoCqUOIPhre8YA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883071538</pqid></control><display><type>article</type><title>Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Garcia-Alles, Luis F ; Giacometti, Gaelle ; Versluis, Cees ; Maveyraud, Laurent ; de Paepe, Diane ; Guiard, Julie ; Tranier, Samuel ; Gilleron, Martine ; Prandi, Jacques ; Hanau, Daniel ; Heck, Albert J.R ; Mori, Lucia ; De Libero, Gennaro ; Puzo, Germain ; Mourey, Lionel ; de la Salle, Henri</creator><creatorcontrib>Garcia-Alles, Luis F ; Giacometti, Gaelle ; Versluis, Cees ; Maveyraud, Laurent ; de Paepe, Diane ; Guiard, Julie ; Tranier, Samuel ; Gilleron, Martine ; Prandi, Jacques ; Hanau, Daniel ; Heck, Albert J.R ; Mori, Lucia ; De Libero, Gennaro ; Puzo, Germain ; Mourey, Lionel ; de la Salle, Henri</creatorcontrib><description>CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b–antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1105627108</identifier><identifier>PMID: 21788486</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acylation ; Antigen presentation ; Antigens ; Antigens, CD1 ; Antigens, CD1 - chemistry ; Antigens, CD1 - metabolism ; Atoms ; Biochemistry, Molecular Biology ; Biological Sciences ; Biotechnology ; Cells ; Crystal structure ; Crystallography, X-Ray ; dendritic cells ; dissociation ; Electron density ; endosomes ; Gene expression ; Humans ; Life Sciences ; Ligands ; Lipid Metabolism ; Lipids ; Lipids - chemistry ; mass spectrometry ; Models, Molecular ; Molecular biology ; Molecules ; Protein Binding ; Protein isoforms ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; T-lymphocytes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (32), p.13230-13235</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 9, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-8ee26d8f2b70b3a585c63d80d2702fbe89712b671bb0b400cec1889168917c8a3</citedby><cites>FETCH-LOGICAL-c524t-8ee26d8f2b70b3a585c63d80d2702fbe89712b671bb0b400cec1889168917c8a3</cites><orcidid>0000-0002-8259-1259 ; 0000-0003-4610-8319 ; 0000-0002-2581-3302 ; 0000-0002-1141-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979173$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979173$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21788486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03003375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Alles, Luis F</creatorcontrib><creatorcontrib>Giacometti, Gaelle</creatorcontrib><creatorcontrib>Versluis, Cees</creatorcontrib><creatorcontrib>Maveyraud, Laurent</creatorcontrib><creatorcontrib>de Paepe, Diane</creatorcontrib><creatorcontrib>Guiard, Julie</creatorcontrib><creatorcontrib>Tranier, Samuel</creatorcontrib><creatorcontrib>Gilleron, Martine</creatorcontrib><creatorcontrib>Prandi, Jacques</creatorcontrib><creatorcontrib>Hanau, Daniel</creatorcontrib><creatorcontrib>Heck, Albert J.R</creatorcontrib><creatorcontrib>Mori, Lucia</creatorcontrib><creatorcontrib>De Libero, Gennaro</creatorcontrib><creatorcontrib>Puzo, Germain</creatorcontrib><creatorcontrib>Mourey, Lionel</creatorcontrib><creatorcontrib>de la Salle, Henri</creatorcontrib><title>Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b–antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.</description><subject>Acylation</subject><subject>Antigen presentation</subject><subject>Antigens</subject><subject>Antigens, CD1</subject><subject>Antigens, CD1 - chemistry</subject><subject>Antigens, CD1 - metabolism</subject><subject>Atoms</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>dendritic cells</subject><subject>dissociation</subject><subject>Electron density</subject><subject>endosomes</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>mass spectrometry</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecules</subject><subject>Protein Binding</subject><subject>Protein isoforms</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>T-lymphocytes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkkFv1DAQhSMEotvCmRNgcUEc0s7YSexckKotUKSVONCeLceZ7GaVjRc7WdF_j6MsXejBsuT53hvNPCfJG4RLBCmu9r0Jl4iQF1wiqGfJAqHEtMhKeJ4sALhMVcazs-Q8hC0AlLmCl8kZR6lUpopFcrf0D2EwHQuDH-0wemKuYZtxZ3q2vEFing5kusAMW3vnDsTC2A5Us8Z51rX7tk7pt92Yfk1s752lECi8Sl40UUOvj_dFcv_1y93yNl39-PZ9eb1Kbc6zIVVEvKhVwysJlTC5ym0hagU1l8CbilQpkVeFxKqCKgOwZFGpEot4pFVGXCSfZ9_9WO2ottQP3nR679ud8Q_amVb_X-nbjV67gxaYF6jyaPBpNtg8kd1er_T0BgJACJkfMLIfj828-zVSGPSuDZa6zvTkxqCVEgLKMp9cPzwht270fdzEBIHEXKgIXc2Q9S4ET81jfwQ9ZaunbPUp26h49--0j_zfMCPAjsCkPNkpLbhGwQVE5O2MbMPg_MlCljLuVMT6-7neGKfN2rdB3__kgEX8SoCqUOIPhre8YA</recordid><startdate>20110809</startdate><enddate>20110809</enddate><creator>Garcia-Alles, Luis F</creator><creator>Giacometti, Gaelle</creator><creator>Versluis, Cees</creator><creator>Maveyraud, Laurent</creator><creator>de Paepe, Diane</creator><creator>Guiard, Julie</creator><creator>Tranier, Samuel</creator><creator>Gilleron, Martine</creator><creator>Prandi, Jacques</creator><creator>Hanau, Daniel</creator><creator>Heck, Albert J.R</creator><creator>Mori, Lucia</creator><creator>De Libero, Gennaro</creator><creator>Puzo, Germain</creator><creator>Mourey, Lionel</creator><creator>de la Salle, Henri</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8259-1259</orcidid><orcidid>https://orcid.org/0000-0003-4610-8319</orcidid><orcidid>https://orcid.org/0000-0002-2581-3302</orcidid><orcidid>https://orcid.org/0000-0002-1141-0393</orcidid></search><sort><creationdate>20110809</creationdate><title>Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes</title><author>Garcia-Alles, Luis F ; Giacometti, Gaelle ; Versluis, Cees ; Maveyraud, Laurent ; de Paepe, Diane ; Guiard, Julie ; Tranier, Samuel ; Gilleron, Martine ; Prandi, Jacques ; Hanau, Daniel ; Heck, Albert J.R ; Mori, Lucia ; De Libero, Gennaro ; Puzo, Germain ; Mourey, Lionel ; de la Salle, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-8ee26d8f2b70b3a585c63d80d2702fbe89712b671bb0b400cec1889168917c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acylation</topic><topic>Antigen presentation</topic><topic>Antigens</topic><topic>Antigens, CD1</topic><topic>Antigens, CD1 - chemistry</topic><topic>Antigens, CD1 - metabolism</topic><topic>Atoms</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>dendritic cells</topic><topic>dissociation</topic><topic>Electron density</topic><topic>endosomes</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>mass spectrometry</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecules</topic><topic>Protein Binding</topic><topic>Protein isoforms</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>T-lymphocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Alles, Luis F</creatorcontrib><creatorcontrib>Giacometti, Gaelle</creatorcontrib><creatorcontrib>Versluis, Cees</creatorcontrib><creatorcontrib>Maveyraud, Laurent</creatorcontrib><creatorcontrib>de Paepe, Diane</creatorcontrib><creatorcontrib>Guiard, Julie</creatorcontrib><creatorcontrib>Tranier, Samuel</creatorcontrib><creatorcontrib>Gilleron, Martine</creatorcontrib><creatorcontrib>Prandi, Jacques</creatorcontrib><creatorcontrib>Hanau, Daniel</creatorcontrib><creatorcontrib>Heck, Albert J.R</creatorcontrib><creatorcontrib>Mori, Lucia</creatorcontrib><creatorcontrib>De Libero, Gennaro</creatorcontrib><creatorcontrib>Puzo, Germain</creatorcontrib><creatorcontrib>Mourey, Lionel</creatorcontrib><creatorcontrib>de la Salle, Henri</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Alles, Luis F</au><au>Giacometti, Gaelle</au><au>Versluis, Cees</au><au>Maveyraud, Laurent</au><au>de Paepe, Diane</au><au>Guiard, Julie</au><au>Tranier, Samuel</au><au>Gilleron, Martine</au><au>Prandi, Jacques</au><au>Hanau, Daniel</au><au>Heck, Albert J.R</au><au>Mori, Lucia</au><au>De Libero, Gennaro</au><au>Puzo, Germain</au><au>Mourey, Lionel</au><au>de la Salle, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-09</date><risdate>2011</risdate><volume>108</volume><issue>32</issue><spage>13230</spage><epage>13235</epage><pages>13230-13235</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b–antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21788486</pmid><doi>10.1073/pnas.1105627108</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8259-1259</orcidid><orcidid>https://orcid.org/0000-0003-4610-8319</orcidid><orcidid>https://orcid.org/0000-0002-2581-3302</orcidid><orcidid>https://orcid.org/0000-0002-1141-0393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (32), p.13230-13235 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_21788486 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Acylation Antigen presentation Antigens Antigens, CD1 Antigens, CD1 - chemistry Antigens, CD1 - metabolism Atoms Biochemistry, Molecular Biology Biological Sciences Biotechnology Cells Crystal structure Crystallography, X-Ray dendritic cells dissociation Electron density endosomes Gene expression Humans Life Sciences Ligands Lipid Metabolism Lipids Lipids - chemistry mass spectrometry Models, Molecular Molecular biology Molecules Protein Binding Protein isoforms Protein Structure, Secondary Protein Structure, Tertiary Proteins T-lymphocytes |
title | Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20human%20CD1e%20reveals%20a%20groove%20suited%20for%20lipid-exchange%20processes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garcia-Alles,%20Luis%20F&rft.date=2011-08-09&rft.volume=108&rft.issue=32&rft.spage=13230&rft.epage=13235&rft.pages=13230-13235&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1105627108&rft_dat=%3Cjstor_pubme%3E27979173%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883071538&rft_id=info:pmid/21788486&rft_jstor_id=27979173&rfr_iscdi=true |