Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis
Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablis...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-06, Vol.108 (26), p.10774-10779 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10779 |
---|---|
container_issue | 26 |
container_start_page | 10774 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Nomura, Kinya Mecey, Christy Lee, Young-Nam Imboden, Lori Alice Chang, Jeff H He, Sheng Yang |
description | Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI. |
doi_str_mv | 10.1073/pnas.1103338108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21670267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978689</jstor_id><sourcerecordid>27978689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQqwumGV9tpx_NggVVV5SJVYQNeW7diph0w82Eml8uvraIYZYMPKi_Od43vvqarXGM4x8OZiO-p8jjE0TSMwiCfVCoPENaMSnlYrAMJrQQk9qV7kvAYA2Qp4Xp0QzDgQxlfVr2vvnZ1iqqcU-t4l16Gw2cxjmB6QGaL9kdFWT3exdyPqXJ90p6cQRxQ90uMBrXXO0QY9Ffu9y8EODk1Jex8sSq6fB12-QGFEl0mb0MVtDvll9czrIbtX-_e0uv14_f3qc33z9dOXq8ub2raETDWmTHjTGtKwRgsggmJjaUuK6ok04InorLEed9R0TeOBcsM84dJoD8y55rT6sMvdzmbjOuvGMtmgtilsdHpQUQf1tzKGO9XHe9VgwgUTJeD9PiDFn7PLk9qEbN0w6NHFOSsJHDMhgf6XFJwSKQTnhTz7h1zHOY3lDgtEZdtSUqCLHWRTzDk5fxgag1r6V0v_6th_cbz9c9cD_7vwAqA9sDiPcUIRtkTyZYk3O2SdS2nHCC6Xa8iiv9vpXkel-xSyuv1GADMALIlgbfMIoa_MrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874495542</pqid></control><display><type>article</type><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</creator><creatorcontrib>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</creatorcontrib><description>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103338108</identifier><identifier>PMID: 21670267</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ADP ribosylation factor ; Arabidopsis ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - physiology ; Bacteria ; Biological Sciences ; Cells ; disease control ; endosomes ; guanine nucleotide exchange factor ; Host-Pathogen Interactions ; Hydrolysis ; Immunity ; Infection ; Infections ; innate immunity ; Leaves ; Lycopersicon esculentum ; Pathogenesis ; Pathogens ; pathovars ; physiological transport ; Plant cells ; Plant diseases ; plant health ; Plant immunity ; Plants ; proteasome endopeptidase complex ; proteasomes ; Pseudomonas syringae ; Pseudomonas syringae - pathogenicity ; regulatory proteins ; Tomatoes ; Traffic ; Transgenic plants ; Translocation ; Vesicles</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (26), p.10774-10779</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 28, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</citedby><cites>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978689$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978689$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21670267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Mecey, Christy</creatorcontrib><creatorcontrib>Lee, Young-Nam</creatorcontrib><creatorcontrib>Imboden, Lori Alice</creatorcontrib><creatorcontrib>Chang, Jeff H</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</description><subject>ADP ribosylation factor</subject><subject>Arabidopsis</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>disease control</subject><subject>endosomes</subject><subject>guanine nucleotide exchange factor</subject><subject>Host-Pathogen Interactions</subject><subject>Hydrolysis</subject><subject>Immunity</subject><subject>Infection</subject><subject>Infections</subject><subject>innate immunity</subject><subject>Leaves</subject><subject>Lycopersicon esculentum</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>pathovars</subject><subject>physiological transport</subject><subject>Plant cells</subject><subject>Plant diseases</subject><subject>plant health</subject><subject>Plant immunity</subject><subject>Plants</subject><subject>proteasome endopeptidase complex</subject><subject>proteasomes</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>regulatory proteins</subject><subject>Tomatoes</subject><subject>Traffic</subject><subject>Transgenic plants</subject><subject>Translocation</subject><subject>Vesicles</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEokNhzQqwumGV9tpx_NggVVV5SJVYQNeW7diph0w82Eml8uvraIYZYMPKi_Od43vvqarXGM4x8OZiO-p8jjE0TSMwiCfVCoPENaMSnlYrAMJrQQk9qV7kvAYA2Qp4Xp0QzDgQxlfVr2vvnZ1iqqcU-t4l16Gw2cxjmB6QGaL9kdFWT3exdyPqXJ90p6cQRxQ90uMBrXXO0QY9Ffu9y8EODk1Jex8sSq6fB12-QGFEl0mb0MVtDvll9czrIbtX-_e0uv14_f3qc33z9dOXq8ub2raETDWmTHjTGtKwRgsggmJjaUuK6ok04InorLEed9R0TeOBcsM84dJoD8y55rT6sMvdzmbjOuvGMtmgtilsdHpQUQf1tzKGO9XHe9VgwgUTJeD9PiDFn7PLk9qEbN0w6NHFOSsJHDMhgf6XFJwSKQTnhTz7h1zHOY3lDgtEZdtSUqCLHWRTzDk5fxgag1r6V0v_6th_cbz9c9cD_7vwAqA9sDiPcUIRtkTyZYk3O2SdS2nHCC6Xa8iiv9vpXkel-xSyuv1GADMALIlgbfMIoa_MrQ</recordid><startdate>20110628</startdate><enddate>20110628</enddate><creator>Nomura, Kinya</creator><creator>Mecey, Christy</creator><creator>Lee, Young-Nam</creator><creator>Imboden, Lori Alice</creator><creator>Chang, Jeff H</creator><creator>He, Sheng Yang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110628</creationdate><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><author>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADP ribosylation factor</topic><topic>Arabidopsis</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>disease control</topic><topic>endosomes</topic><topic>guanine nucleotide exchange factor</topic><topic>Host-Pathogen Interactions</topic><topic>Hydrolysis</topic><topic>Immunity</topic><topic>Infection</topic><topic>Infections</topic><topic>innate immunity</topic><topic>Leaves</topic><topic>Lycopersicon esculentum</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>pathovars</topic><topic>physiological transport</topic><topic>Plant cells</topic><topic>Plant diseases</topic><topic>plant health</topic><topic>Plant immunity</topic><topic>Plants</topic><topic>proteasome endopeptidase complex</topic><topic>proteasomes</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>regulatory proteins</topic><topic>Tomatoes</topic><topic>Traffic</topic><topic>Transgenic plants</topic><topic>Translocation</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Mecey, Christy</creatorcontrib><creatorcontrib>Lee, Young-Nam</creatorcontrib><creatorcontrib>Imboden, Lori Alice</creatorcontrib><creatorcontrib>Chang, Jeff H</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nomura, Kinya</au><au>Mecey, Christy</au><au>Lee, Young-Nam</au><au>Imboden, Lori Alice</au><au>Chang, Jeff H</au><au>He, Sheng Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-06-28</date><risdate>2011</risdate><volume>108</volume><issue>26</issue><spage>10774</spage><epage>10779</epage><pages>10774-10779</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21670267</pmid><doi>10.1073/pnas.1103338108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (26), p.10774-10779 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_21670267 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ADP ribosylation factor Arabidopsis Arabidopsis - immunology Arabidopsis - microbiology Arabidopsis Proteins - physiology Bacteria Biological Sciences Cells disease control endosomes guanine nucleotide exchange factor Host-Pathogen Interactions Hydrolysis Immunity Infection Infections innate immunity Leaves Lycopersicon esculentum Pathogenesis Pathogens pathovars physiological transport Plant cells Plant diseases plant health Plant immunity Plants proteasome endopeptidase complex proteasomes Pseudomonas syringae Pseudomonas syringae - pathogenicity regulatory proteins Tomatoes Traffic Transgenic plants Translocation Vesicles |
title | Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effector-triggered%20immunity%20blocks%20pathogen%20degradation%20of%20an%20immunity-associated%20vesicle%20traffic%20regulator%20in%20Arabidopsis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nomura,%20Kinya&rft.date=2011-06-28&rft.volume=108&rft.issue=26&rft.spage=10774&rft.epage=10779&rft.pages=10774-10779&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103338108&rft_dat=%3Cjstor_pubme%3E27978689%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874495542&rft_id=info:pmid/21670267&rft_jstor_id=27978689&rfr_iscdi=true |