Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis

Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-06, Vol.108 (26), p.10774-10779
Hauptverfasser: Nomura, Kinya, Mecey, Christy, Lee, Young-Nam, Imboden, Lori Alice, Chang, Jeff H, He, Sheng Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10779
container_issue 26
container_start_page 10774
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Nomura, Kinya
Mecey, Christy
Lee, Young-Nam
Imboden, Lori Alice
Chang, Jeff H
He, Sheng Yang
description Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.
doi_str_mv 10.1073/pnas.1103338108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21670267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978689</jstor_id><sourcerecordid>27978689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQqwumGV9tpx_NggVVV5SJVYQNeW7diph0w82Eml8uvraIYZYMPKi_Od43vvqarXGM4x8OZiO-p8jjE0TSMwiCfVCoPENaMSnlYrAMJrQQk9qV7kvAYA2Qp4Xp0QzDgQxlfVr2vvnZ1iqqcU-t4l16Gw2cxjmB6QGaL9kdFWT3exdyPqXJ90p6cQRxQ90uMBrXXO0QY9Ffu9y8EODk1Jex8sSq6fB12-QGFEl0mb0MVtDvll9czrIbtX-_e0uv14_f3qc33z9dOXq8ub2raETDWmTHjTGtKwRgsggmJjaUuK6ok04InorLEed9R0TeOBcsM84dJoD8y55rT6sMvdzmbjOuvGMtmgtilsdHpQUQf1tzKGO9XHe9VgwgUTJeD9PiDFn7PLk9qEbN0w6NHFOSsJHDMhgf6XFJwSKQTnhTz7h1zHOY3lDgtEZdtSUqCLHWRTzDk5fxgag1r6V0v_6th_cbz9c9cD_7vwAqA9sDiPcUIRtkTyZYk3O2SdS2nHCC6Xa8iiv9vpXkel-xSyuv1GADMALIlgbfMIoa_MrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874495542</pqid></control><display><type>article</type><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</creator><creatorcontrib>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</creatorcontrib><description>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103338108</identifier><identifier>PMID: 21670267</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ADP ribosylation factor ; Arabidopsis ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - physiology ; Bacteria ; Biological Sciences ; Cells ; disease control ; endosomes ; guanine nucleotide exchange factor ; Host-Pathogen Interactions ; Hydrolysis ; Immunity ; Infection ; Infections ; innate immunity ; Leaves ; Lycopersicon esculentum ; Pathogenesis ; Pathogens ; pathovars ; physiological transport ; Plant cells ; Plant diseases ; plant health ; Plant immunity ; Plants ; proteasome endopeptidase complex ; proteasomes ; Pseudomonas syringae ; Pseudomonas syringae - pathogenicity ; regulatory proteins ; Tomatoes ; Traffic ; Transgenic plants ; Translocation ; Vesicles</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (26), p.10774-10779</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 28, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</citedby><cites>FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978689$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978689$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21670267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Mecey, Christy</creatorcontrib><creatorcontrib>Lee, Young-Nam</creatorcontrib><creatorcontrib>Imboden, Lori Alice</creatorcontrib><creatorcontrib>Chang, Jeff H</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</description><subject>ADP ribosylation factor</subject><subject>Arabidopsis</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>disease control</subject><subject>endosomes</subject><subject>guanine nucleotide exchange factor</subject><subject>Host-Pathogen Interactions</subject><subject>Hydrolysis</subject><subject>Immunity</subject><subject>Infection</subject><subject>Infections</subject><subject>innate immunity</subject><subject>Leaves</subject><subject>Lycopersicon esculentum</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>pathovars</subject><subject>physiological transport</subject><subject>Plant cells</subject><subject>Plant diseases</subject><subject>plant health</subject><subject>Plant immunity</subject><subject>Plants</subject><subject>proteasome endopeptidase complex</subject><subject>proteasomes</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>regulatory proteins</subject><subject>Tomatoes</subject><subject>Traffic</subject><subject>Transgenic plants</subject><subject>Translocation</subject><subject>Vesicles</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEokNhzQqwumGV9tpx_NggVVV5SJVYQNeW7diph0w82Eml8uvraIYZYMPKi_Od43vvqarXGM4x8OZiO-p8jjE0TSMwiCfVCoPENaMSnlYrAMJrQQk9qV7kvAYA2Qp4Xp0QzDgQxlfVr2vvnZ1iqqcU-t4l16Gw2cxjmB6QGaL9kdFWT3exdyPqXJ90p6cQRxQ90uMBrXXO0QY9Ffu9y8EODk1Jex8sSq6fB12-QGFEl0mb0MVtDvll9czrIbtX-_e0uv14_f3qc33z9dOXq8ub2raETDWmTHjTGtKwRgsggmJjaUuK6ok04InorLEed9R0TeOBcsM84dJoD8y55rT6sMvdzmbjOuvGMtmgtilsdHpQUQf1tzKGO9XHe9VgwgUTJeD9PiDFn7PLk9qEbN0w6NHFOSsJHDMhgf6XFJwSKQTnhTz7h1zHOY3lDgtEZdtSUqCLHWRTzDk5fxgag1r6V0v_6th_cbz9c9cD_7vwAqA9sDiPcUIRtkTyZYk3O2SdS2nHCC6Xa8iiv9vpXkel-xSyuv1GADMALIlgbfMIoa_MrQ</recordid><startdate>20110628</startdate><enddate>20110628</enddate><creator>Nomura, Kinya</creator><creator>Mecey, Christy</creator><creator>Lee, Young-Nam</creator><creator>Imboden, Lori Alice</creator><creator>Chang, Jeff H</creator><creator>He, Sheng Yang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110628</creationdate><title>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</title><author>Nomura, Kinya ; Mecey, Christy ; Lee, Young-Nam ; Imboden, Lori Alice ; Chang, Jeff H ; He, Sheng Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-1468fb5b2363a802841bc452c52f29b0f28dcbcf1d4bd33f047b6f279baf06ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADP ribosylation factor</topic><topic>Arabidopsis</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>disease control</topic><topic>endosomes</topic><topic>guanine nucleotide exchange factor</topic><topic>Host-Pathogen Interactions</topic><topic>Hydrolysis</topic><topic>Immunity</topic><topic>Infection</topic><topic>Infections</topic><topic>innate immunity</topic><topic>Leaves</topic><topic>Lycopersicon esculentum</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>pathovars</topic><topic>physiological transport</topic><topic>Plant cells</topic><topic>Plant diseases</topic><topic>plant health</topic><topic>Plant immunity</topic><topic>Plants</topic><topic>proteasome endopeptidase complex</topic><topic>proteasomes</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>regulatory proteins</topic><topic>Tomatoes</topic><topic>Traffic</topic><topic>Transgenic plants</topic><topic>Translocation</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Mecey, Christy</creatorcontrib><creatorcontrib>Lee, Young-Nam</creatorcontrib><creatorcontrib>Imboden, Lori Alice</creatorcontrib><creatorcontrib>Chang, Jeff H</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nomura, Kinya</au><au>Mecey, Christy</au><au>Lee, Young-Nam</au><au>Imboden, Lori Alice</au><au>Chang, Jeff H</au><au>He, Sheng Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-06-28</date><risdate>2011</risdate><volume>108</volume><issue>26</issue><spage>10774</spage><epage>10779</epage><pages>10774-10779</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21670267</pmid><doi>10.1073/pnas.1103338108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (26), p.10774-10779
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_21670267
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ADP ribosylation factor
Arabidopsis
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - physiology
Bacteria
Biological Sciences
Cells
disease control
endosomes
guanine nucleotide exchange factor
Host-Pathogen Interactions
Hydrolysis
Immunity
Infection
Infections
innate immunity
Leaves
Lycopersicon esculentum
Pathogenesis
Pathogens
pathovars
physiological transport
Plant cells
Plant diseases
plant health
Plant immunity
Plants
proteasome endopeptidase complex
proteasomes
Pseudomonas syringae
Pseudomonas syringae - pathogenicity
regulatory proteins
Tomatoes
Traffic
Transgenic plants
Translocation
Vesicles
title Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effector-triggered%20immunity%20blocks%20pathogen%20degradation%20of%20an%20immunity-associated%20vesicle%20traffic%20regulator%20in%20Arabidopsis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nomura,%20Kinya&rft.date=2011-06-28&rft.volume=108&rft.issue=26&rft.spage=10774&rft.epage=10779&rft.pages=10774-10779&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103338108&rft_dat=%3Cjstor_pubme%3E27978689%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874495542&rft_id=info:pmid/21670267&rft_jstor_id=27978689&rfr_iscdi=true