Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores

Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2011-07, Vol.22 (28), p.285304-285304
Hauptverfasser: Asghar, Waseem, Ilyas, Azhar, Deshmukh, Rajendra R, Sumitsawan, Sulak, Timmons, Richard B, Iqbal, Samir M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285304
container_issue 28
container_start_page 285304
container_title Nanotechnology
container_volume 22
creator Asghar, Waseem
Ilyas, Azhar
Deshmukh, Rajendra R
Sumitsawan, Sulak
Timmons, Richard B
Iqbal, Samir M
description Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.
doi_str_mv 10.1088/0957-4484/22/28/285304
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21636880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>871387550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-eb2fb8ce76711f90a6855c7e232e29ac63ba7b07f3237735ddaeaa074461df683</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EoqXwF6psTKH-SGx3RBVfUiUYYGKwXhy7BJLY2MkAv56UlC4gIVl6g8-97-kgNCf4gmApF3iZizTLZLagdEHl8HKGswM0JYyTlOdUHqLpHpqgkxhfMSZEUnKMJpRwxqXEU_T80NfRlImvITaQeFd_NCZUn9BVrk2sC4l2bRdcXVftJokvoWrfYGMSaMsk9sGCNgPReBer74SzSQut8y6YeIqOLAztZ7s5Q0_XV4-r23R9f3O3ulynmi1xl5qC2kJqI7ggxC4xcJnnWhjKqKFL0JwVIAosLKNMCJaXJRgALLKMk9JyyWbofOz1wb33JnaqqaI2dQ2tcX1UUhAmRZ7jgeQjqYOLMRirfKgaCB-KYLX1qrbK1FaZolRRqUavQ3C-W9EXjSn3sR-RA5COQOX8_vfvMuVLO_DkN__PEV9Gh5GE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871387550</pqid></control><display><type>article</type><title>Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Asghar, Waseem ; Ilyas, Azhar ; Deshmukh, Rajendra R ; Sumitsawan, Sulak ; Timmons, Richard B ; Iqbal, Samir M</creator><creatorcontrib>Asghar, Waseem ; Ilyas, Azhar ; Deshmukh, Rajendra R ; Sumitsawan, Sulak ; Timmons, Richard B ; Iqbal, Samir M</creatorcontrib><description>Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/22/28/285304</identifier><identifier>PMID: 21636880</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><ispartof>Nanotechnology, 2011-07, Vol.22 (28), p.285304-285304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-eb2fb8ce76711f90a6855c7e232e29ac63ba7b07f3237735ddaeaa074461df683</citedby><cites>FETCH-LOGICAL-c390t-eb2fb8ce76711f90a6855c7e232e29ac63ba7b07f3237735ddaeaa074461df683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/22/28/285304/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21636880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asghar, Waseem</creatorcontrib><creatorcontrib>Ilyas, Azhar</creatorcontrib><creatorcontrib>Deshmukh, Rajendra R</creatorcontrib><creatorcontrib>Sumitsawan, Sulak</creatorcontrib><creatorcontrib>Timmons, Richard B</creatorcontrib><creatorcontrib>Iqbal, Samir M</creatorcontrib><title>Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.</description><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EoqXwF6psTKH-SGx3RBVfUiUYYGKwXhy7BJLY2MkAv56UlC4gIVl6g8-97-kgNCf4gmApF3iZizTLZLagdEHl8HKGswM0JYyTlOdUHqLpHpqgkxhfMSZEUnKMJpRwxqXEU_T80NfRlImvITaQeFd_NCZUn9BVrk2sC4l2bRdcXVftJokvoWrfYGMSaMsk9sGCNgPReBer74SzSQut8y6YeIqOLAztZ7s5Q0_XV4-r23R9f3O3ulynmi1xl5qC2kJqI7ggxC4xcJnnWhjKqKFL0JwVIAosLKNMCJaXJRgALLKMk9JyyWbofOz1wb33JnaqqaI2dQ2tcX1UUhAmRZ7jgeQjqYOLMRirfKgaCB-KYLX1qrbK1FaZolRRqUavQ3C-W9EXjSn3sR-RA5COQOX8_vfvMuVLO_DkN__PEV9Gh5GE</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Asghar, Waseem</creator><creator>Ilyas, Azhar</creator><creator>Deshmukh, Rajendra R</creator><creator>Sumitsawan, Sulak</creator><creator>Timmons, Richard B</creator><creator>Iqbal, Samir M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110715</creationdate><title>Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores</title><author>Asghar, Waseem ; Ilyas, Azhar ; Deshmukh, Rajendra R ; Sumitsawan, Sulak ; Timmons, Richard B ; Iqbal, Samir M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-eb2fb8ce76711f90a6855c7e232e29ac63ba7b07f3237735ddaeaa074461df683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asghar, Waseem</creatorcontrib><creatorcontrib>Ilyas, Azhar</creatorcontrib><creatorcontrib>Deshmukh, Rajendra R</creatorcontrib><creatorcontrib>Sumitsawan, Sulak</creatorcontrib><creatorcontrib>Timmons, Richard B</creatorcontrib><creatorcontrib>Iqbal, Samir M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asghar, Waseem</au><au>Ilyas, Azhar</au><au>Deshmukh, Rajendra R</au><au>Sumitsawan, Sulak</au><au>Timmons, Richard B</au><au>Iqbal, Samir M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2011-07-15</date><risdate>2011</risdate><volume>22</volume><issue>28</issue><spage>285304</spage><epage>285304</epage><pages>285304-285304</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21636880</pmid><doi>10.1088/0957-4484/22/28/285304</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2011-07, Vol.22 (28), p.285304-285304
issn 0957-4484
1361-6528
language eng
recordid cdi_pubmed_primary_21636880
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsed%20plasma%20polymerization%20for%20controlling%20shrinkage%20and%20surface%20composition%20of%20nanopores&rft.jtitle=Nanotechnology&rft.au=Asghar,%20Waseem&rft.date=2011-07-15&rft.volume=22&rft.issue=28&rft.spage=285304&rft.epage=285304&rft.pages=285304-285304&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/22/28/285304&rft_dat=%3Cproquest_pubme%3E871387550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871387550&rft_id=info:pmid/21636880&rfr_iscdi=true