The arcsine is asinine: the analysis of proportions in ecology

The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2011-01, Vol.92 (1), p.3-10
Hauptverfasser: Warton, David I, Hui, Francis K. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 3
container_title Ecology (Durham)
container_volume 92
creator Warton, David I
Hui, Francis K. C
description The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.
doi_str_mv 10.1890/10-0340.1
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21560670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29779568</jstor_id><sourcerecordid>29779568</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhwA8AIlCFOATGH_EHh0rVqhSkShxoD5wsr9cpWWXj1M4K8u87UbYUVaqEffDYfuad8SsT8pLCR6oNfKJQAhe4eUQW1HBTGqrgMVkAUFYaWekD8iznDeCgQj8lB4xWEqSCBTm--BUKl3xuulA0uXAYYPi5GKbzzrVjxtNYF32KfUxDE7tcNF0RfGzj1ficPKldm8OL_XpILr-cXiy_luffz74tT85LJ7GhUniGc-WUkVKpihom6hXXNCjwcsVBrH0tdFDMB-WcpgyEp0wzvmYUhKn5IXk_62Ib17uQB7ttsg9t67oQd9lqlBW6AvofpKw4aNBIvr1HbuIu4ZMniAuKggahDzPkU8w5hdr2qdm6NFoKdjJ_Wifz7VT69V5wt9qG9V_y1m0EjvaAy961dXKdb_IdJ0CLSk1CbOZ-N20YH65oT5c_GVC0k3JMejUnbfIQ052oUcpUcnrum_m-dtG6q4SFL39gtsRPYTSXCol3M-GGsY-dDdn9U6tf13b4MzxE3fPiBoFcwCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863417489</pqid></control><display><type>article</type><title>The arcsine is asinine: the analysis of proportions in ecology</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Warton, David I ; Hui, Francis K. C</creator><contributor>Inouye, BD</contributor><creatorcontrib>Warton, David I ; Hui, Francis K. C ; Inouye, BD</creatorcontrib><description>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/10-0340.1</identifier><identifier>PMID: 21560670</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; arcsine transformation ; binomial ; Binomials ; Biological and medical sciences ; Computer Simulation ; data collection ; Ecological modeling ; Ecology ; Ecology - methods ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; General aspects ; generalized linear mixed models ; Inverse sine function ; Linear models ; Logistic regression ; logit analysis ; logit transformation ; Marine ecology ; Models, Biological ; overdispersion ; power ; prediction ; Proportions ; Regression analysis ; Sample size ; Simulation ; Statistical variance ; Statistics ; Statistics as Topic ; Trigonometry ; Type I error</subject><ispartof>Ecology (Durham), 2011-01, Vol.92 (1), p.3-10</ispartof><rights>Ecological Society of America</rights><rights>Copyright © 2011 The Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Jan 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</citedby><cites>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29779568$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29779568$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,4010,27900,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24084571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21560670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Inouye, BD</contributor><creatorcontrib>Warton, David I</creatorcontrib><creatorcontrib>Hui, Francis K. C</creatorcontrib><title>The arcsine is asinine: the analysis of proportions in ecology</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>arcsine transformation</subject><subject>binomial</subject><subject>Binomials</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>data collection</subject><subject>Ecological modeling</subject><subject>Ecology</subject><subject>Ecology - methods</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>generalized linear mixed models</subject><subject>Inverse sine function</subject><subject>Linear models</subject><subject>Logistic regression</subject><subject>logit analysis</subject><subject>logit transformation</subject><subject>Marine ecology</subject><subject>Models, Biological</subject><subject>overdispersion</subject><subject>power</subject><subject>prediction</subject><subject>Proportions</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Simulation</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics as Topic</subject><subject>Trigonometry</subject><subject>Type I error</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhwA8AIlCFOATGH_EHh0rVqhSkShxoD5wsr9cpWWXj1M4K8u87UbYUVaqEffDYfuad8SsT8pLCR6oNfKJQAhe4eUQW1HBTGqrgMVkAUFYaWekD8iznDeCgQj8lB4xWEqSCBTm--BUKl3xuulA0uXAYYPi5GKbzzrVjxtNYF32KfUxDE7tcNF0RfGzj1ficPKldm8OL_XpILr-cXiy_luffz74tT85LJ7GhUniGc-WUkVKpihom6hXXNCjwcsVBrH0tdFDMB-WcpgyEp0wzvmYUhKn5IXk_62Ib17uQB7ttsg9t67oQd9lqlBW6AvofpKw4aNBIvr1HbuIu4ZMniAuKggahDzPkU8w5hdr2qdm6NFoKdjJ_Wifz7VT69V5wt9qG9V_y1m0EjvaAy961dXKdb_IdJ0CLSk1CbOZ-N20YH65oT5c_GVC0k3JMejUnbfIQ052oUcpUcnrum_m-dtG6q4SFL39gtsRPYTSXCol3M-GGsY-dDdn9U6tf13b4MzxE3fPiBoFcwCI</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Warton, David I</creator><creator>Hui, Francis K. C</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>201101</creationdate><title>The arcsine is asinine: the analysis of proportions in ecology</title><author>Warton, David I ; Hui, Francis K. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>arcsine transformation</topic><topic>binomial</topic><topic>Binomials</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>data collection</topic><topic>Ecological modeling</topic><topic>Ecology</topic><topic>Ecology - methods</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>generalized linear mixed models</topic><topic>Inverse sine function</topic><topic>Linear models</topic><topic>Logistic regression</topic><topic>logit analysis</topic><topic>logit transformation</topic><topic>Marine ecology</topic><topic>Models, Biological</topic><topic>overdispersion</topic><topic>power</topic><topic>prediction</topic><topic>Proportions</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Simulation</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics as Topic</topic><topic>Trigonometry</topic><topic>Type I error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warton, David I</creatorcontrib><creatorcontrib>Hui, Francis K. C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warton, David I</au><au>Hui, Francis K. C</au><au>Inouye, BD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The arcsine is asinine: the analysis of proportions in ecology</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-01</date><risdate>2011</risdate><volume>92</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>21560670</pmid><doi>10.1890/10-0340.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2011-01, Vol.92 (1), p.3-10
issn 0012-9658
1939-9170
language eng
recordid cdi_pubmed_primary_21560670
source Jstor Complete Legacy; MEDLINE; Wiley Online Library All Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
arcsine transformation
binomial
Binomials
Biological and medical sciences
Computer Simulation
data collection
Ecological modeling
Ecology
Ecology - methods
Ecosystem
Fundamental and applied biological sciences. Psychology
General aspects
generalized linear mixed models
Inverse sine function
Linear models
Logistic regression
logit analysis
logit transformation
Marine ecology
Models, Biological
overdispersion
power
prediction
Proportions
Regression analysis
Sample size
Simulation
Statistical variance
Statistics
Statistics as Topic
Trigonometry
Type I error
title The arcsine is asinine: the analysis of proportions in ecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20arcsine%20is%20asinine:%20the%20analysis%20of%20proportions%20in%20ecology&rft.jtitle=Ecology%20(Durham)&rft.au=Warton,%20David%20I&rft.date=2011-01&rft.volume=92&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/10-0340.1&rft_dat=%3Cjstor_pubme%3E29779568%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863417489&rft_id=info:pmid/21560670&rft_jstor_id=29779568&rfr_iscdi=true