The arcsine is asinine: the analysis of proportions in ecology
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomi...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2011-01, Vol.92 (1), p.3-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Ecology (Durham) |
container_volume | 92 |
creator | Warton, David I Hui, Francis K. C |
description | The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods. |
doi_str_mv | 10.1890/10-0340.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21560670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29779568</jstor_id><sourcerecordid>29779568</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhwA8AIlCFOATGH_EHh0rVqhSkShxoD5wsr9cpWWXj1M4K8u87UbYUVaqEffDYfuad8SsT8pLCR6oNfKJQAhe4eUQW1HBTGqrgMVkAUFYaWekD8iznDeCgQj8lB4xWEqSCBTm--BUKl3xuulA0uXAYYPi5GKbzzrVjxtNYF32KfUxDE7tcNF0RfGzj1ficPKldm8OL_XpILr-cXiy_luffz74tT85LJ7GhUniGc-WUkVKpihom6hXXNCjwcsVBrH0tdFDMB-WcpgyEp0wzvmYUhKn5IXk_62Ib17uQB7ttsg9t67oQd9lqlBW6AvofpKw4aNBIvr1HbuIu4ZMniAuKggahDzPkU8w5hdr2qdm6NFoKdjJ_Wifz7VT69V5wt9qG9V_y1m0EjvaAy961dXKdb_IdJ0CLSk1CbOZ-N20YH65oT5c_GVC0k3JMejUnbfIQ052oUcpUcnrum_m-dtG6q4SFL39gtsRPYTSXCol3M-GGsY-dDdn9U6tf13b4MzxE3fPiBoFcwCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863417489</pqid></control><display><type>article</type><title>The arcsine is asinine: the analysis of proportions in ecology</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Warton, David I ; Hui, Francis K. C</creator><contributor>Inouye, BD</contributor><creatorcontrib>Warton, David I ; Hui, Francis K. C ; Inouye, BD</creatorcontrib><description>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/10-0340.1</identifier><identifier>PMID: 21560670</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; arcsine transformation ; binomial ; Binomials ; Biological and medical sciences ; Computer Simulation ; data collection ; Ecological modeling ; Ecology ; Ecology - methods ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; General aspects ; generalized linear mixed models ; Inverse sine function ; Linear models ; Logistic regression ; logit analysis ; logit transformation ; Marine ecology ; Models, Biological ; overdispersion ; power ; prediction ; Proportions ; Regression analysis ; Sample size ; Simulation ; Statistical variance ; Statistics ; Statistics as Topic ; Trigonometry ; Type I error</subject><ispartof>Ecology (Durham), 2011-01, Vol.92 (1), p.3-10</ispartof><rights>Ecological Society of America</rights><rights>Copyright © 2011 The Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Jan 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</citedby><cites>FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29779568$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29779568$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,4010,27900,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24084571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21560670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Inouye, BD</contributor><creatorcontrib>Warton, David I</creatorcontrib><creatorcontrib>Hui, Francis K. C</creatorcontrib><title>The arcsine is asinine: the analysis of proportions in ecology</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>arcsine transformation</subject><subject>binomial</subject><subject>Binomials</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>data collection</subject><subject>Ecological modeling</subject><subject>Ecology</subject><subject>Ecology - methods</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>generalized linear mixed models</subject><subject>Inverse sine function</subject><subject>Linear models</subject><subject>Logistic regression</subject><subject>logit analysis</subject><subject>logit transformation</subject><subject>Marine ecology</subject><subject>Models, Biological</subject><subject>overdispersion</subject><subject>power</subject><subject>prediction</subject><subject>Proportions</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Simulation</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics as Topic</subject><subject>Trigonometry</subject><subject>Type I error</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhwA8AIlCFOATGH_EHh0rVqhSkShxoD5wsr9cpWWXj1M4K8u87UbYUVaqEffDYfuad8SsT8pLCR6oNfKJQAhe4eUQW1HBTGqrgMVkAUFYaWekD8iznDeCgQj8lB4xWEqSCBTm--BUKl3xuulA0uXAYYPi5GKbzzrVjxtNYF32KfUxDE7tcNF0RfGzj1ficPKldm8OL_XpILr-cXiy_luffz74tT85LJ7GhUniGc-WUkVKpihom6hXXNCjwcsVBrH0tdFDMB-WcpgyEp0wzvmYUhKn5IXk_62Ib17uQB7ttsg9t67oQd9lqlBW6AvofpKw4aNBIvr1HbuIu4ZMniAuKggahDzPkU8w5hdr2qdm6NFoKdjJ_Wifz7VT69V5wt9qG9V_y1m0EjvaAy961dXKdb_IdJ0CLSk1CbOZ-N20YH65oT5c_GVC0k3JMejUnbfIQ052oUcpUcnrum_m-dtG6q4SFL39gtsRPYTSXCol3M-GGsY-dDdn9U6tf13b4MzxE3fPiBoFcwCI</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Warton, David I</creator><creator>Hui, Francis K. C</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>201101</creationdate><title>The arcsine is asinine: the analysis of proportions in ecology</title><author>Warton, David I ; Hui, Francis K. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6193-4c2c2cba79667751924fb381e70c6b304dcf48e72ce7aa81204c12823d21049f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>arcsine transformation</topic><topic>binomial</topic><topic>Binomials</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>data collection</topic><topic>Ecological modeling</topic><topic>Ecology</topic><topic>Ecology - methods</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>generalized linear mixed models</topic><topic>Inverse sine function</topic><topic>Linear models</topic><topic>Logistic regression</topic><topic>logit analysis</topic><topic>logit transformation</topic><topic>Marine ecology</topic><topic>Models, Biological</topic><topic>overdispersion</topic><topic>power</topic><topic>prediction</topic><topic>Proportions</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Simulation</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics as Topic</topic><topic>Trigonometry</topic><topic>Type I error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warton, David I</creatorcontrib><creatorcontrib>Hui, Francis K. C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warton, David I</au><au>Hui, Francis K. C</au><au>Inouye, BD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The arcsine is asinine: the analysis of proportions in ecology</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-01</date><risdate>2011</risdate><volume>92</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>21560670</pmid><doi>10.1890/10-0340.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2011-01, Vol.92 (1), p.3-10 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_pubmed_primary_21560670 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library All Journals |
subjects | Animal and plant ecology Animal, plant and microbial ecology arcsine transformation binomial Binomials Biological and medical sciences Computer Simulation data collection Ecological modeling Ecology Ecology - methods Ecosystem Fundamental and applied biological sciences. Psychology General aspects generalized linear mixed models Inverse sine function Linear models Logistic regression logit analysis logit transformation Marine ecology Models, Biological overdispersion power prediction Proportions Regression analysis Sample size Simulation Statistical variance Statistics Statistics as Topic Trigonometry Type I error |
title | The arcsine is asinine: the analysis of proportions in ecology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20arcsine%20is%20asinine:%20the%20analysis%20of%20proportions%20in%20ecology&rft.jtitle=Ecology%20(Durham)&rft.au=Warton,%20David%20I&rft.date=2011-01&rft.volume=92&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/10-0340.1&rft_dat=%3Cjstor_pubme%3E29779568%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863417489&rft_id=info:pmid/21560670&rft_jstor_id=29779568&rfr_iscdi=true |