Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each bei...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2011-04, Vol.56 (8), p.2459-2480 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2480 |
---|---|
container_issue | 8 |
container_start_page | 2459 |
container_title | Physics in medicine & biology |
container_volume | 56 |
creator | Maramraju, Sri Harsha Smith, S David Junnarkar, Sachin S Schulz, Daniela Stoll, Sean Ravindranath, Bosky Purschke, Martin L Rescia, Sergio Southekal, Sudeepti Pratte, Jean-François Vaska, Paul Woody, Craig L Schlyer, David J |
description | We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI. |
doi_str_mv | 10.1088/0031-9155/56/8/009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21441651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>859761384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-f5be88a5c76f41c5f0ee1bc67545be0fd1356c22060bfdf4472bc3b860ef79183</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwAhyQb4hDWm9iOw43VBUoKgJBOVuJY0tG-SNOJHh7HKX0UonTaj3fzq4HoUsgcyBCLAiJIEiAsQXji6FNjtAUIg4BZ5wco-kemKAz5z4JARAhPUWTECgFzmCKnt7LtChwWllfsbNlX3Rppeve4dfVdvH8tr7FtrKd9ar-bnRrdaW08284xcmc4i0urWprD56jE5MWTl_s6gx93K-2y8dg8_KwXt5tAhXFtAsMy7QQKVMxNxQUM0RryBSPGfUKMTlEjKswJJxkJjeUxmGmokxwok2cgIhm6Hr0bdr6q9euk6V1ShfFeLcULIk5RIJ6MhxJf6BzrTayaf0_2x8JRA4RyiEhOSQkGZdDm_ihq519n5U634_8ZeaBmxGwdbNXD41kkxvPBofsP8t_AW9UhHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859761384</pqid></control><display><type>article</type><title>Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Maramraju, Sri Harsha ; Smith, S David ; Junnarkar, Sachin S ; Schulz, Daniela ; Stoll, Sean ; Ravindranath, Bosky ; Purschke, Martin L ; Rescia, Sergio ; Southekal, Sudeepti ; Pratte, Jean-François ; Vaska, Paul ; Woody, Craig L ; Schlyer, David J</creator><creatorcontrib>Maramraju, Sri Harsha ; Smith, S David ; Junnarkar, Sachin S ; Schulz, Daniela ; Stoll, Sean ; Ravindranath, Bosky ; Purschke, Martin L ; Rescia, Sergio ; Southekal, Sudeepti ; Pratte, Jean-François ; Vaska, Paul ; Woody, Craig L ; Schlyer, David J</creatorcontrib><description>We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/56/8/009</identifier><identifier>PMID: 21441651</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Brain - diagnostic imaging ; Brain - pathology ; Calibration ; Female ; Fluorodeoxyglucose F18 ; Heart - diagnostic imaging ; Heart - physiology ; Lutetium ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Male ; Mice ; Phantoms, Imaging ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; Raclopride ; Radioisotopes ; Radiopharmaceuticals ; Rats ; Rats, Sprague-Dawley ; Reproducibility of Results ; Silicates</subject><ispartof>Physics in medicine & biology, 2011-04, Vol.56 (8), p.2459-2480</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-f5be88a5c76f41c5f0ee1bc67545be0fd1356c22060bfdf4472bc3b860ef79183</citedby><cites>FETCH-LOGICAL-c374t-f5be88a5c76f41c5f0ee1bc67545be0fd1356c22060bfdf4472bc3b860ef79183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/56/8/009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,53837,53917</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21441651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maramraju, Sri Harsha</creatorcontrib><creatorcontrib>Smith, S David</creatorcontrib><creatorcontrib>Junnarkar, Sachin S</creatorcontrib><creatorcontrib>Schulz, Daniela</creatorcontrib><creatorcontrib>Stoll, Sean</creatorcontrib><creatorcontrib>Ravindranath, Bosky</creatorcontrib><creatorcontrib>Purschke, Martin L</creatorcontrib><creatorcontrib>Rescia, Sergio</creatorcontrib><creatorcontrib>Southekal, Sudeepti</creatorcontrib><creatorcontrib>Pratte, Jean-François</creatorcontrib><creatorcontrib>Vaska, Paul</creatorcontrib><creatorcontrib>Woody, Craig L</creatorcontrib><creatorcontrib>Schlyer, David J</creatorcontrib><title>Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.</description><subject>Animals</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Calibration</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Heart - diagnostic imaging</subject><subject>Heart - physiology</subject><subject>Lutetium</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mice</subject><subject>Phantoms, Imaging</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>Raclopride</subject><subject>Radioisotopes</subject><subject>Radiopharmaceuticals</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reproducibility of Results</subject><subject>Silicates</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqXwAhyQb4hDWm9iOw43VBUoKgJBOVuJY0tG-SNOJHh7HKX0UonTaj3fzq4HoUsgcyBCLAiJIEiAsQXji6FNjtAUIg4BZ5wco-kemKAz5z4JARAhPUWTECgFzmCKnt7LtChwWllfsbNlX3Rppeve4dfVdvH8tr7FtrKd9ar-bnRrdaW08284xcmc4i0urWprD56jE5MWTl_s6gx93K-2y8dg8_KwXt5tAhXFtAsMy7QQKVMxNxQUM0RryBSPGfUKMTlEjKswJJxkJjeUxmGmokxwok2cgIhm6Hr0bdr6q9euk6V1ShfFeLcULIk5RIJ6MhxJf6BzrTayaf0_2x8JRA4RyiEhOSQkGZdDm_ihq519n5U634_8ZeaBmxGwdbNXD41kkxvPBofsP8t_AW9UhHY</recordid><startdate>20110421</startdate><enddate>20110421</enddate><creator>Maramraju, Sri Harsha</creator><creator>Smith, S David</creator><creator>Junnarkar, Sachin S</creator><creator>Schulz, Daniela</creator><creator>Stoll, Sean</creator><creator>Ravindranath, Bosky</creator><creator>Purschke, Martin L</creator><creator>Rescia, Sergio</creator><creator>Southekal, Sudeepti</creator><creator>Pratte, Jean-François</creator><creator>Vaska, Paul</creator><creator>Woody, Craig L</creator><creator>Schlyer, David J</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110421</creationdate><title>Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI</title><author>Maramraju, Sri Harsha ; Smith, S David ; Junnarkar, Sachin S ; Schulz, Daniela ; Stoll, Sean ; Ravindranath, Bosky ; Purschke, Martin L ; Rescia, Sergio ; Southekal, Sudeepti ; Pratte, Jean-François ; Vaska, Paul ; Woody, Craig L ; Schlyer, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-f5be88a5c76f41c5f0ee1bc67545be0fd1356c22060bfdf4472bc3b860ef79183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Calibration</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Heart - diagnostic imaging</topic><topic>Heart - physiology</topic><topic>Lutetium</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mice</topic><topic>Phantoms, Imaging</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>Raclopride</topic><topic>Radioisotopes</topic><topic>Radiopharmaceuticals</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reproducibility of Results</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maramraju, Sri Harsha</creatorcontrib><creatorcontrib>Smith, S David</creatorcontrib><creatorcontrib>Junnarkar, Sachin S</creatorcontrib><creatorcontrib>Schulz, Daniela</creatorcontrib><creatorcontrib>Stoll, Sean</creatorcontrib><creatorcontrib>Ravindranath, Bosky</creatorcontrib><creatorcontrib>Purschke, Martin L</creatorcontrib><creatorcontrib>Rescia, Sergio</creatorcontrib><creatorcontrib>Southekal, Sudeepti</creatorcontrib><creatorcontrib>Pratte, Jean-François</creatorcontrib><creatorcontrib>Vaska, Paul</creatorcontrib><creatorcontrib>Woody, Craig L</creatorcontrib><creatorcontrib>Schlyer, David J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maramraju, Sri Harsha</au><au>Smith, S David</au><au>Junnarkar, Sachin S</au><au>Schulz, Daniela</au><au>Stoll, Sean</au><au>Ravindranath, Bosky</au><au>Purschke, Martin L</au><au>Rescia, Sergio</au><au>Southekal, Sudeepti</au><au>Pratte, Jean-François</au><au>Vaska, Paul</au><au>Woody, Craig L</au><au>Schlyer, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2011-04-21</date><risdate>2011</risdate><volume>56</volume><issue>8</issue><spage>2459</spage><epage>2480</epage><pages>2459-2480</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>21441651</pmid><doi>10.1088/0031-9155/56/8/009</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2011-04, Vol.56 (8), p.2459-2480 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pubmed_primary_21441651 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Animals Brain - diagnostic imaging Brain - pathology Calibration Female Fluorodeoxyglucose F18 Heart - diagnostic imaging Heart - physiology Lutetium Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Male Mice Phantoms, Imaging Positron-Emission Tomography - instrumentation Positron-Emission Tomography - methods Raclopride Radioisotopes Radiopharmaceuticals Rats Rats, Sprague-Dawley Reproducibility of Results Silicates |
title | Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20animal%20simultaneous%20PET/MRI:%20initial%20experiences%20in%20a%209.4%20T%20microMRI&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Maramraju,%20Sri%20Harsha&rft.date=2011-04-21&rft.volume=56&rft.issue=8&rft.spage=2459&rft.epage=2480&rft.pages=2459-2480&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/56/8/009&rft_dat=%3Cproquest_pubme%3E859761384%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859761384&rft_id=info:pmid/21441651&rfr_iscdi=true |