Protein conducting nanopores

About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2010-11, Vol.22 (45), p.454102
Hauptverfasser: Harsman, Anke, Krüger, Vivien, Bartsch, Philipp, Honigmann, Alf, Schmidt, Oliver, Rao, Sanjana, Meisinger, Christof, Wagner, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 45
container_start_page 454102
container_title Journal of physics. Condensed matter
container_volume 22
creator Harsman, Anke
Krüger, Vivien
Bartsch, Philipp
Honigmann, Alf
Schmidt, Oliver
Rao, Sanjana
Meisinger, Christof
Wagner, Richard
description About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --> E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).
doi_str_mv 10.1088/0953-8984/22/45/454102
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_21339590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21339590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-9a51dc9d1dd268a47eeafeb9fb20fe2137d3cfe15b6e3579b126b9471f0ed3023</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRbK3-Aym9eIzZ2a_sHqX4BQU9KHhbNvshkTYJu-nBf29CajwoCANzmOedmQehJeBrwFLmWHGaSSVZTkjOeF8MMDlCc6ACMsHk2zGaT9AMnaX0gTFmkrJTNCNAqeIKz9Hlc2w6X9Ur29Rub7uqfl_Vpm7aJvp0jk6C2SZ_cegL9Hp3-7J-yDZP94_rm01mqZRdpgwHZ5UD54iQhhXem-BLFUqCg-9vFY7a4IGXwlNeqBKIKBUrIGDvKCZ0gcS418YmpeiDbmO1M_FTA9aDrh5M9GCiCdGM61G3Dy7HYLsvd95NsW-_Hrg6ACZZsw3R1LZKPxxlhBZE9Fw2clXTTtO_j-rWhZ6H3_w_z34BJVp47A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Protein conducting nanopores</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Harsman, Anke ; Krüger, Vivien ; Bartsch, Philipp ; Honigmann, Alf ; Schmidt, Oliver ; Rao, Sanjana ; Meisinger, Christof ; Wagner, Richard</creator><creatorcontrib>Harsman, Anke ; Krüger, Vivien ; Bartsch, Philipp ; Honigmann, Alf ; Schmidt, Oliver ; Rao, Sanjana ; Meisinger, Christof ; Wagner, Richard</creatorcontrib><description>About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --&gt; E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/45/454102</identifier><identifier>PMID: 21339590</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biological and medical sciences ; Computer Simulation ; Diverse techniques ; Fundamental and applied biological sciences. Psychology ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - ultrastructure ; Models, Chemical ; Molecular and cellular biology ; Peptides - chemistry ; Porosity ; Protein Transport</subject><ispartof>Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454102</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-9a51dc9d1dd268a47eeafeb9fb20fe2137d3cfe15b6e3579b126b9471f0ed3023</citedby><cites>FETCH-LOGICAL-c388t-9a51dc9d1dd268a47eeafeb9fb20fe2137d3cfe15b6e3579b126b9471f0ed3023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/22/45/454102/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53813,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23423726$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harsman, Anke</creatorcontrib><creatorcontrib>Krüger, Vivien</creatorcontrib><creatorcontrib>Bartsch, Philipp</creatorcontrib><creatorcontrib>Honigmann, Alf</creatorcontrib><creatorcontrib>Schmidt, Oliver</creatorcontrib><creatorcontrib>Rao, Sanjana</creatorcontrib><creatorcontrib>Meisinger, Christof</creatorcontrib><creatorcontrib>Wagner, Richard</creatorcontrib><title>Protein conducting nanopores</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --&gt; E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).</description><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Diverse techniques</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - ultrastructure</subject><subject>Models, Chemical</subject><subject>Molecular and cellular biology</subject><subject>Peptides - chemistry</subject><subject>Porosity</subject><subject>Protein Transport</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFj01Lw0AQhhdRbK3-Aym9eIzZ2a_sHqX4BQU9KHhbNvshkTYJu-nBf29CajwoCANzmOedmQehJeBrwFLmWHGaSSVZTkjOeF8MMDlCc6ACMsHk2zGaT9AMnaX0gTFmkrJTNCNAqeIKz9Hlc2w6X9Ur29Rub7uqfl_Vpm7aJvp0jk6C2SZ_cegL9Hp3-7J-yDZP94_rm01mqZRdpgwHZ5UD54iQhhXem-BLFUqCg-9vFY7a4IGXwlNeqBKIKBUrIGDvKCZ0gcS418YmpeiDbmO1M_FTA9aDrh5M9GCiCdGM61G3Dy7HYLsvd95NsW-_Hrg6ACZZsw3R1LZKPxxlhBZE9Fw2clXTTtO_j-rWhZ6H3_w_z34BJVp47A</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Harsman, Anke</creator><creator>Krüger, Vivien</creator><creator>Bartsch, Philipp</creator><creator>Honigmann, Alf</creator><creator>Schmidt, Oliver</creator><creator>Rao, Sanjana</creator><creator>Meisinger, Christof</creator><creator>Wagner, Richard</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101117</creationdate><title>Protein conducting nanopores</title><author>Harsman, Anke ; Krüger, Vivien ; Bartsch, Philipp ; Honigmann, Alf ; Schmidt, Oliver ; Rao, Sanjana ; Meisinger, Christof ; Wagner, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-9a51dc9d1dd268a47eeafeb9fb20fe2137d3cfe15b6e3579b126b9471f0ed3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Diverse techniques</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - ultrastructure</topic><topic>Models, Chemical</topic><topic>Molecular and cellular biology</topic><topic>Peptides - chemistry</topic><topic>Porosity</topic><topic>Protein Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harsman, Anke</creatorcontrib><creatorcontrib>Krüger, Vivien</creatorcontrib><creatorcontrib>Bartsch, Philipp</creatorcontrib><creatorcontrib>Honigmann, Alf</creatorcontrib><creatorcontrib>Schmidt, Oliver</creatorcontrib><creatorcontrib>Rao, Sanjana</creatorcontrib><creatorcontrib>Meisinger, Christof</creatorcontrib><creatorcontrib>Wagner, Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harsman, Anke</au><au>Krüger, Vivien</au><au>Bartsch, Philipp</au><au>Honigmann, Alf</au><au>Schmidt, Oliver</au><au>Rao, Sanjana</au><au>Meisinger, Christof</au><au>Wagner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein conducting nanopores</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-11-17</date><risdate>2010</risdate><volume>22</volume><issue>45</issue><spage>454102</spage><pages>454102-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --&gt; E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21339590</pmid><doi>10.1088/0953-8984/22/45/454102</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454102
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_21339590
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Biological and medical sciences
Computer Simulation
Diverse techniques
Fundamental and applied biological sciences. Psychology
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - ultrastructure
Models, Chemical
Molecular and cellular biology
Peptides - chemistry
Porosity
Protein Transport
title Protein conducting nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20conducting%20nanopores&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Harsman,%20Anke&rft.date=2010-11-17&rft.volume=22&rft.issue=45&rft.spage=454102&rft.pages=454102-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/22/45/454102&rft_dat=%3Cpubmed_cross%3E21339590%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21339590&rfr_iscdi=true