Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma
Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the ph...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-03, Vol.108 (9), p.3749-3754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3754 |
---|---|
container_issue | 9 |
container_start_page | 3749 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Keunen, Olivier Johansson, Mikael Oudin, Anaïs Sanzey, Morgane Rahim, Siti A. Abdul Fack, Fred Thorsen, Frits Taxt, Torfinn Bartos, Michal Jirik, Radovan Miletic, Hrvoje Wang, Jian Stieber, Daniel Stuhr, Linda Moen, Ingrid Rygh, Cecilie Brekke Bjerkvig, Rolf Niclou, Simone P. Klein, George |
description | Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype. |
doi_str_mv | 10.1073/pnas.1014480108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21321221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41061003</jstor_id><sourcerecordid>41061003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi1ERZfCmRMo6gUODR1_xr4grUpbkCpxgR64WE7iLFklcbCTVv33TLRl23Lg5JHnmVcz7wwhbyh8pFDw03FwCSMqhAYK-hlZUTA0V8LAc7ICYEWuBROH5GVKWwAwUsMLcsgoZ5QxuiI_18PU5tfnlxfZFL2bej9MWfT1XPmUlV0IdZbmcezuMjfUWTtUCCVMTXMfYlb5rsPPG5faMGCQbbo2lJ1LU-jdK3LQuC751_fvEflxcf797Et-9e3y69n6Kq8UwJRX2lCAWpe01gVjnquCKVlqZrRpWMNN4SteF4YDL42iQrGyEg1vitrX0pWKH5GTnW669eNc2jG2vYt3NrjWfm6v1zbEjZ372UohuET80w5Htvd1hQNH1z2pepoZ2l92E24sBzTZcBR4fy8Qw-_Zp8n2bVqccIMPc7JaSgbosEHyw39JXFxhtDAKED3-B92GOQ7oG-oJI5lUS-unO6iKIaXom33XFOxyD3a5B_twD1jx7vGwe_7vATwClsoHOW2N5YVYZni7A7a41LgnBAWFa-P8Dz5jxRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854952565</pqid></control><display><type>article</type><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</creator><creatorcontrib>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</creatorcontrib><description>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1014480108</identifier><identifier>PMID: 21321221</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alanine ; angiogenesis ; Animals ; Antibodies ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal - therapeutic use ; Antibodies, Monoclonal, Humanized ; Bevacizumab ; Biological Sciences ; Blood flow ; Blood vessels ; Blood Volume - drug effects ; Brain ; Cancer ; Capillary Permeability - drug effects ; Cell Hypoxia - drug effects ; Cells ; Cellular metabolism ; Contrast Media ; Disease Progression ; Drugs ; Enzyme Activation - drug effects ; Genotype & phenotype ; Glioblastoma ; Glioblastoma - blood supply ; Glioblastoma - enzymology ; Glioblastoma - pathology ; Glioblastoma - ultrastructure ; Glioma ; Glycolysis ; Heterologous transplantation ; Humans ; Hypoxia ; Hypoxia-inducible factor 1 alpha ; Lactic acid ; Magnetic Resonance Imaging ; Medical treatment ; Metabolic pathways ; metabolism ; Metabolites ; Mitochondria ; Neoplasm Invasiveness ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - pathology ; NMR ; Nuclear magnetic resonance ; Perfusion ; Phosphatidylinositol 3-Kinases - metabolism ; Physiology ; Quantification ; Rats ; Rats, Nude ; Signal transduction ; Signal Transduction - drug effects ; spheroids ; Tumor cells ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - antagonists & inhibitors ; Vascular Endothelial Growth Factor A - metabolism ; Wnt Proteins - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3749-3754</ispartof><rights>Copyright National Academy of Sciences Mar 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</citedby><cites>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41061003$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41061003$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21321221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-54435$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Keunen, Olivier</creatorcontrib><creatorcontrib>Johansson, Mikael</creatorcontrib><creatorcontrib>Oudin, Anaïs</creatorcontrib><creatorcontrib>Sanzey, Morgane</creatorcontrib><creatorcontrib>Rahim, Siti A. Abdul</creatorcontrib><creatorcontrib>Fack, Fred</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Taxt, Torfinn</creatorcontrib><creatorcontrib>Bartos, Michal</creatorcontrib><creatorcontrib>Jirik, Radovan</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Stieber, Daniel</creatorcontrib><creatorcontrib>Stuhr, Linda</creatorcontrib><creatorcontrib>Moen, Ingrid</creatorcontrib><creatorcontrib>Rygh, Cecilie Brekke</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P.</creatorcontrib><creatorcontrib>Klein, George</creatorcontrib><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</description><subject>Alanine</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Bevacizumab</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Blood Volume - drug effects</subject><subject>Brain</subject><subject>Cancer</subject><subject>Capillary Permeability - drug effects</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cells</subject><subject>Cellular metabolism</subject><subject>Contrast Media</subject><subject>Disease Progression</subject><subject>Drugs</subject><subject>Enzyme Activation - drug effects</subject><subject>Genotype & phenotype</subject><subject>Glioblastoma</subject><subject>Glioblastoma - blood supply</subject><subject>Glioblastoma - enzymology</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - ultrastructure</subject><subject>Glioma</subject><subject>Glycolysis</subject><subject>Heterologous transplantation</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1 alpha</subject><subject>Lactic acid</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical treatment</subject><subject>Metabolic pathways</subject><subject>metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Neoplasm Invasiveness</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Perfusion</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physiology</subject><subject>Quantification</subject><subject>Rats</subject><subject>Rats, Nude</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>spheroids</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wnt Proteins - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1v1DAQhi1ERZfCmRMo6gUODR1_xr4grUpbkCpxgR64WE7iLFklcbCTVv33TLRl23Lg5JHnmVcz7wwhbyh8pFDw03FwCSMqhAYK-hlZUTA0V8LAc7ICYEWuBROH5GVKWwAwUsMLcsgoZ5QxuiI_18PU5tfnlxfZFL2bej9MWfT1XPmUlV0IdZbmcezuMjfUWTtUCCVMTXMfYlb5rsPPG5faMGCQbbo2lJ1LU-jdK3LQuC751_fvEflxcf797Et-9e3y69n6Kq8UwJRX2lCAWpe01gVjnquCKVlqZrRpWMNN4SteF4YDL42iQrGyEg1vitrX0pWKH5GTnW669eNc2jG2vYt3NrjWfm6v1zbEjZ372UohuET80w5Htvd1hQNH1z2pepoZ2l92E24sBzTZcBR4fy8Qw-_Zp8n2bVqccIMPc7JaSgbosEHyw39JXFxhtDAKED3-B92GOQ7oG-oJI5lUS-unO6iKIaXom33XFOxyD3a5B_twD1jx7vGwe_7vATwClsoHOW2N5YVYZni7A7a41LgnBAWFa-P8Dz5jxRc</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Keunen, Olivier</creator><creator>Johansson, Mikael</creator><creator>Oudin, Anaïs</creator><creator>Sanzey, Morgane</creator><creator>Rahim, Siti A. Abdul</creator><creator>Fack, Fred</creator><creator>Thorsen, Frits</creator><creator>Taxt, Torfinn</creator><creator>Bartos, Michal</creator><creator>Jirik, Radovan</creator><creator>Miletic, Hrvoje</creator><creator>Wang, Jian</creator><creator>Stieber, Daniel</creator><creator>Stuhr, Linda</creator><creator>Moen, Ingrid</creator><creator>Rygh, Cecilie Brekke</creator><creator>Bjerkvig, Rolf</creator><creator>Niclou, Simone P.</creator><creator>Klein, George</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20110301</creationdate><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><author>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alanine</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Bevacizumab</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Blood Volume - drug effects</topic><topic>Brain</topic><topic>Cancer</topic><topic>Capillary Permeability - drug effects</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cells</topic><topic>Cellular metabolism</topic><topic>Contrast Media</topic><topic>Disease Progression</topic><topic>Drugs</topic><topic>Enzyme Activation - drug effects</topic><topic>Genotype & phenotype</topic><topic>Glioblastoma</topic><topic>Glioblastoma - blood supply</topic><topic>Glioblastoma - enzymology</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - ultrastructure</topic><topic>Glioma</topic><topic>Glycolysis</topic><topic>Heterologous transplantation</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1 alpha</topic><topic>Lactic acid</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical treatment</topic><topic>Metabolic pathways</topic><topic>metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Neoplasm Invasiveness</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Perfusion</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physiology</topic><topic>Quantification</topic><topic>Rats</topic><topic>Rats, Nude</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>spheroids</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wnt Proteins - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keunen, Olivier</creatorcontrib><creatorcontrib>Johansson, Mikael</creatorcontrib><creatorcontrib>Oudin, Anaïs</creatorcontrib><creatorcontrib>Sanzey, Morgane</creatorcontrib><creatorcontrib>Rahim, Siti A. Abdul</creatorcontrib><creatorcontrib>Fack, Fred</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Taxt, Torfinn</creatorcontrib><creatorcontrib>Bartos, Michal</creatorcontrib><creatorcontrib>Jirik, Radovan</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Stieber, Daniel</creatorcontrib><creatorcontrib>Stuhr, Linda</creatorcontrib><creatorcontrib>Moen, Ingrid</creatorcontrib><creatorcontrib>Rygh, Cecilie Brekke</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P.</creatorcontrib><creatorcontrib>Klein, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keunen, Olivier</au><au>Johansson, Mikael</au><au>Oudin, Anaïs</au><au>Sanzey, Morgane</au><au>Rahim, Siti A. Abdul</au><au>Fack, Fred</au><au>Thorsen, Frits</au><au>Taxt, Torfinn</au><au>Bartos, Michal</au><au>Jirik, Radovan</au><au>Miletic, Hrvoje</au><au>Wang, Jian</au><au>Stieber, Daniel</au><au>Stuhr, Linda</au><au>Moen, Ingrid</au><au>Rygh, Cecilie Brekke</au><au>Bjerkvig, Rolf</au><au>Niclou, Simone P.</au><au>Klein, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>108</volume><issue>9</issue><spage>3749</spage><epage>3754</epage><pages>3749-3754</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21321221</pmid><doi>10.1073/pnas.1014480108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3749-3754 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_21321221 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alanine angiogenesis Animals Antibodies Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal - therapeutic use Antibodies, Monoclonal, Humanized Bevacizumab Biological Sciences Blood flow Blood vessels Blood Volume - drug effects Brain Cancer Capillary Permeability - drug effects Cell Hypoxia - drug effects Cells Cellular metabolism Contrast Media Disease Progression Drugs Enzyme Activation - drug effects Genotype & phenotype Glioblastoma Glioblastoma - blood supply Glioblastoma - enzymology Glioblastoma - pathology Glioblastoma - ultrastructure Glioma Glycolysis Heterologous transplantation Humans Hypoxia Hypoxia-inducible factor 1 alpha Lactic acid Magnetic Resonance Imaging Medical treatment Metabolic pathways metabolism Metabolites Mitochondria Neoplasm Invasiveness Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - pathology NMR Nuclear magnetic resonance Perfusion Phosphatidylinositol 3-Kinases - metabolism Physiology Quantification Rats Rats, Nude Signal transduction Signal Transduction - drug effects spheroids Tumor cells Tumors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - antagonists & inhibitors Vascular Endothelial Growth Factor A - metabolism Wnt Proteins - metabolism Xenograft Model Antitumor Assays |
title | Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-VEGF%20treatment%20reduces%20blood%20supply%20and%20increases%20tumor%20cell%20invasion%20in%20glioblastoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Keunen,%20Olivier&rft.date=2011-03-01&rft.volume=108&rft.issue=9&rft.spage=3749&rft.epage=3754&rft.pages=3749-3754&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1014480108&rft_dat=%3Cjstor_pubme%3E41061003%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854952565&rft_id=info:pmid/21321221&rft_jstor_id=41061003&rfr_iscdi=true |