Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma

Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-03, Vol.108 (9), p.3749-3754
Hauptverfasser: Keunen, Olivier, Johansson, Mikael, Oudin, Anaïs, Sanzey, Morgane, Rahim, Siti A. Abdul, Fack, Fred, Thorsen, Frits, Taxt, Torfinn, Bartos, Michal, Jirik, Radovan, Miletic, Hrvoje, Wang, Jian, Stieber, Daniel, Stuhr, Linda, Moen, Ingrid, Rygh, Cecilie Brekke, Bjerkvig, Rolf, Niclou, Simone P., Klein, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3754
container_issue 9
container_start_page 3749
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Keunen, Olivier
Johansson, Mikael
Oudin, Anaïs
Sanzey, Morgane
Rahim, Siti A. Abdul
Fack, Fred
Thorsen, Frits
Taxt, Torfinn
Bartos, Michal
Jirik, Radovan
Miletic, Hrvoje
Wang, Jian
Stieber, Daniel
Stuhr, Linda
Moen, Ingrid
Rygh, Cecilie Brekke
Bjerkvig, Rolf
Niclou, Simone P.
Klein, George
description Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.
doi_str_mv 10.1073/pnas.1014480108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21321221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41061003</jstor_id><sourcerecordid>41061003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi1ERZfCmRMo6gUODR1_xr4grUpbkCpxgR64WE7iLFklcbCTVv33TLRl23Lg5JHnmVcz7wwhbyh8pFDw03FwCSMqhAYK-hlZUTA0V8LAc7ICYEWuBROH5GVKWwAwUsMLcsgoZ5QxuiI_18PU5tfnlxfZFL2bej9MWfT1XPmUlV0IdZbmcezuMjfUWTtUCCVMTXMfYlb5rsPPG5faMGCQbbo2lJ1LU-jdK3LQuC751_fvEflxcf797Et-9e3y69n6Kq8UwJRX2lCAWpe01gVjnquCKVlqZrRpWMNN4SteF4YDL42iQrGyEg1vitrX0pWKH5GTnW669eNc2jG2vYt3NrjWfm6v1zbEjZ372UohuET80w5Htvd1hQNH1z2pepoZ2l92E24sBzTZcBR4fy8Qw-_Zp8n2bVqccIMPc7JaSgbosEHyw39JXFxhtDAKED3-B92GOQ7oG-oJI5lUS-unO6iKIaXom33XFOxyD3a5B_twD1jx7vGwe_7vATwClsoHOW2N5YVYZni7A7a41LgnBAWFa-P8Dz5jxRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854952565</pqid></control><display><type>article</type><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</creator><creatorcontrib>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</creatorcontrib><description>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1014480108</identifier><identifier>PMID: 21321221</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alanine ; angiogenesis ; Animals ; Antibodies ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal - therapeutic use ; Antibodies, Monoclonal, Humanized ; Bevacizumab ; Biological Sciences ; Blood flow ; Blood vessels ; Blood Volume - drug effects ; Brain ; Cancer ; Capillary Permeability - drug effects ; Cell Hypoxia - drug effects ; Cells ; Cellular metabolism ; Contrast Media ; Disease Progression ; Drugs ; Enzyme Activation - drug effects ; Genotype &amp; phenotype ; Glioblastoma ; Glioblastoma - blood supply ; Glioblastoma - enzymology ; Glioblastoma - pathology ; Glioblastoma - ultrastructure ; Glioma ; Glycolysis ; Heterologous transplantation ; Humans ; Hypoxia ; Hypoxia-inducible factor 1 alpha ; Lactic acid ; Magnetic Resonance Imaging ; Medical treatment ; Metabolic pathways ; metabolism ; Metabolites ; Mitochondria ; Neoplasm Invasiveness ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - pathology ; NMR ; Nuclear magnetic resonance ; Perfusion ; Phosphatidylinositol 3-Kinases - metabolism ; Physiology ; Quantification ; Rats ; Rats, Nude ; Signal transduction ; Signal Transduction - drug effects ; spheroids ; Tumor cells ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor A - metabolism ; Wnt Proteins - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3749-3754</ispartof><rights>Copyright National Academy of Sciences Mar 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</citedby><cites>FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41061003$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41061003$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21321221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-54435$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Keunen, Olivier</creatorcontrib><creatorcontrib>Johansson, Mikael</creatorcontrib><creatorcontrib>Oudin, Anaïs</creatorcontrib><creatorcontrib>Sanzey, Morgane</creatorcontrib><creatorcontrib>Rahim, Siti A. Abdul</creatorcontrib><creatorcontrib>Fack, Fred</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Taxt, Torfinn</creatorcontrib><creatorcontrib>Bartos, Michal</creatorcontrib><creatorcontrib>Jirik, Radovan</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Stieber, Daniel</creatorcontrib><creatorcontrib>Stuhr, Linda</creatorcontrib><creatorcontrib>Moen, Ingrid</creatorcontrib><creatorcontrib>Rygh, Cecilie Brekke</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P.</creatorcontrib><creatorcontrib>Klein, George</creatorcontrib><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</description><subject>Alanine</subject><subject>angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Bevacizumab</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Blood Volume - drug effects</subject><subject>Brain</subject><subject>Cancer</subject><subject>Capillary Permeability - drug effects</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cells</subject><subject>Cellular metabolism</subject><subject>Contrast Media</subject><subject>Disease Progression</subject><subject>Drugs</subject><subject>Enzyme Activation - drug effects</subject><subject>Genotype &amp; phenotype</subject><subject>Glioblastoma</subject><subject>Glioblastoma - blood supply</subject><subject>Glioblastoma - enzymology</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - ultrastructure</subject><subject>Glioma</subject><subject>Glycolysis</subject><subject>Heterologous transplantation</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1 alpha</subject><subject>Lactic acid</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical treatment</subject><subject>Metabolic pathways</subject><subject>metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Neoplasm Invasiveness</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Perfusion</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physiology</subject><subject>Quantification</subject><subject>Rats</subject><subject>Rats, Nude</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>spheroids</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wnt Proteins - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1v1DAQhi1ERZfCmRMo6gUODR1_xr4grUpbkCpxgR64WE7iLFklcbCTVv33TLRl23Lg5JHnmVcz7wwhbyh8pFDw03FwCSMqhAYK-hlZUTA0V8LAc7ICYEWuBROH5GVKWwAwUsMLcsgoZ5QxuiI_18PU5tfnlxfZFL2bej9MWfT1XPmUlV0IdZbmcezuMjfUWTtUCCVMTXMfYlb5rsPPG5faMGCQbbo2lJ1LU-jdK3LQuC751_fvEflxcf797Et-9e3y69n6Kq8UwJRX2lCAWpe01gVjnquCKVlqZrRpWMNN4SteF4YDL42iQrGyEg1vitrX0pWKH5GTnW669eNc2jG2vYt3NrjWfm6v1zbEjZ372UohuET80w5Htvd1hQNH1z2pepoZ2l92E24sBzTZcBR4fy8Qw-_Zp8n2bVqccIMPc7JaSgbosEHyw39JXFxhtDAKED3-B92GOQ7oG-oJI5lUS-unO6iKIaXom33XFOxyD3a5B_twD1jx7vGwe_7vATwClsoHOW2N5YVYZni7A7a41LgnBAWFa-P8Dz5jxRc</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Keunen, Olivier</creator><creator>Johansson, Mikael</creator><creator>Oudin, Anaïs</creator><creator>Sanzey, Morgane</creator><creator>Rahim, Siti A. Abdul</creator><creator>Fack, Fred</creator><creator>Thorsen, Frits</creator><creator>Taxt, Torfinn</creator><creator>Bartos, Michal</creator><creator>Jirik, Radovan</creator><creator>Miletic, Hrvoje</creator><creator>Wang, Jian</creator><creator>Stieber, Daniel</creator><creator>Stuhr, Linda</creator><creator>Moen, Ingrid</creator><creator>Rygh, Cecilie Brekke</creator><creator>Bjerkvig, Rolf</creator><creator>Niclou, Simone P.</creator><creator>Klein, George</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20110301</creationdate><title>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</title><author>Keunen, Olivier ; Johansson, Mikael ; Oudin, Anaïs ; Sanzey, Morgane ; Rahim, Siti A. Abdul ; Fack, Fred ; Thorsen, Frits ; Taxt, Torfinn ; Bartos, Michal ; Jirik, Radovan ; Miletic, Hrvoje ; Wang, Jian ; Stieber, Daniel ; Stuhr, Linda ; Moen, Ingrid ; Rygh, Cecilie Brekke ; Bjerkvig, Rolf ; Niclou, Simone P. ; Klein, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-c89100d8b1d8722e367265b82989f2f397ec3d79303b961462bc4f3f7ded5ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alanine</topic><topic>angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Bevacizumab</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Blood Volume - drug effects</topic><topic>Brain</topic><topic>Cancer</topic><topic>Capillary Permeability - drug effects</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cells</topic><topic>Cellular metabolism</topic><topic>Contrast Media</topic><topic>Disease Progression</topic><topic>Drugs</topic><topic>Enzyme Activation - drug effects</topic><topic>Genotype &amp; phenotype</topic><topic>Glioblastoma</topic><topic>Glioblastoma - blood supply</topic><topic>Glioblastoma - enzymology</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - ultrastructure</topic><topic>Glioma</topic><topic>Glycolysis</topic><topic>Heterologous transplantation</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1 alpha</topic><topic>Lactic acid</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical treatment</topic><topic>Metabolic pathways</topic><topic>metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Neoplasm Invasiveness</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Perfusion</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physiology</topic><topic>Quantification</topic><topic>Rats</topic><topic>Rats, Nude</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>spheroids</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wnt Proteins - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keunen, Olivier</creatorcontrib><creatorcontrib>Johansson, Mikael</creatorcontrib><creatorcontrib>Oudin, Anaïs</creatorcontrib><creatorcontrib>Sanzey, Morgane</creatorcontrib><creatorcontrib>Rahim, Siti A. Abdul</creatorcontrib><creatorcontrib>Fack, Fred</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Taxt, Torfinn</creatorcontrib><creatorcontrib>Bartos, Michal</creatorcontrib><creatorcontrib>Jirik, Radovan</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Stieber, Daniel</creatorcontrib><creatorcontrib>Stuhr, Linda</creatorcontrib><creatorcontrib>Moen, Ingrid</creatorcontrib><creatorcontrib>Rygh, Cecilie Brekke</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P.</creatorcontrib><creatorcontrib>Klein, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keunen, Olivier</au><au>Johansson, Mikael</au><au>Oudin, Anaïs</au><au>Sanzey, Morgane</au><au>Rahim, Siti A. Abdul</au><au>Fack, Fred</au><au>Thorsen, Frits</au><au>Taxt, Torfinn</au><au>Bartos, Michal</au><au>Jirik, Radovan</au><au>Miletic, Hrvoje</au><au>Wang, Jian</au><au>Stieber, Daniel</au><au>Stuhr, Linda</au><au>Moen, Ingrid</au><au>Rygh, Cecilie Brekke</au><au>Bjerkvig, Rolf</au><au>Niclou, Simone P.</au><au>Klein, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>108</volume><issue>9</issue><spage>3749</spage><epage>3754</epage><pages>3749-3754</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large-and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with gn induction of hypoxia-inducible factor 1a and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21321221</pmid><doi>10.1073/pnas.1014480108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3749-3754
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmed_primary_21321221
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alanine
angiogenesis
Animals
Antibodies
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal - therapeutic use
Antibodies, Monoclonal, Humanized
Bevacizumab
Biological Sciences
Blood flow
Blood vessels
Blood Volume - drug effects
Brain
Cancer
Capillary Permeability - drug effects
Cell Hypoxia - drug effects
Cells
Cellular metabolism
Contrast Media
Disease Progression
Drugs
Enzyme Activation - drug effects
Genotype & phenotype
Glioblastoma
Glioblastoma - blood supply
Glioblastoma - enzymology
Glioblastoma - pathology
Glioblastoma - ultrastructure
Glioma
Glycolysis
Heterologous transplantation
Humans
Hypoxia
Hypoxia-inducible factor 1 alpha
Lactic acid
Magnetic Resonance Imaging
Medical treatment
Metabolic pathways
metabolism
Metabolites
Mitochondria
Neoplasm Invasiveness
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - pathology
NMR
Nuclear magnetic resonance
Perfusion
Phosphatidylinositol 3-Kinases - metabolism
Physiology
Quantification
Rats
Rats, Nude
Signal transduction
Signal Transduction - drug effects
spheroids
Tumor cells
Tumors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - metabolism
Wnt Proteins - metabolism
Xenograft Model Antitumor Assays
title Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-VEGF%20treatment%20reduces%20blood%20supply%20and%20increases%20tumor%20cell%20invasion%20in%20glioblastoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Keunen,%20Olivier&rft.date=2011-03-01&rft.volume=108&rft.issue=9&rft.spage=3749&rft.epage=3754&rft.pages=3749-3754&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1014480108&rft_dat=%3Cjstor_pubme%3E41061003%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854952565&rft_id=info:pmid/21321221&rft_jstor_id=41061003&rfr_iscdi=true