Human transcriptome array for high-throughput clinical studies
A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-03, Vol.108 (9), p.3707-3712 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3712 |
---|---|
container_issue | 9 |
container_start_page | 3707 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Xu, Weihong Seok, Junhee Mindrinos, Michael N Schweitzer, Anthony C Jiang, Hui Wilhelmy, Julie Clark, Tyson A Kapur, Karen Xing, Yi Faham, Malek Storey, John D Moldawer, Lyle L Maier, Ronald V Tompkins, Ronald G Wong, Wing Hung Davis, Ronald W Xiao, Wenzhong |
description | A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays. |
doi_str_mv | 10.1073/pnas.1019753108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21317363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41060996</jstor_id><sourcerecordid>41060996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMQceGUdsYfiX2phKpCK1XiUHq2HK-z8SqJg50g9b-vV1u2pacZaX7z9J4eIR8RThFqdjaNJuUNVS0YgnxFVggKy4oreE1WALQuJaf8hLxLaQcASkh4S04oMqxZxVbk_GoZzFjM0YzJRj_NYXCFidHcF22IRee3XTl3MSzbblrmwvZ-9Nb0RZqXjXfpPXnTmj65D49zTe5-XP6-uCpvfv28vvh-U1oh-FyyyiDKTU05tAaVwca11DrTqspaRNdQgRV3ktLGOoUcLLO8QcZEI5pq49ianB90p6UZ3Ma6MTvu9RT9YOK9Dsbr_y-j7_Q2_NUMuEReZYFvjwIx_FlcmvXgk3V9b0YXlqRlhUIxLmQmv74gd2GJY06npeBKUCEgQ2cHyMaQUnTt0QqC3jej983op2byx-fnCY78vyqeAfvPJzmplWZ1llyTTwdgl-YQjwRHqECpfcQvh3trgjbb6JO-u6WALJvgMntnD7x7p9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854952550</pqid></control><display><type>article</type><title>Human transcriptome array for high-throughput clinical studies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong</creator><creatorcontrib>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong ; Inflammation and Host Response to Injury Large-Scale Collaborative Research Program ; the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><description>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1019753108</identifier><identifier>PMID: 21317363</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Biological Sciences ; Exons ; Exons - genetics ; Gene expression ; Gene Expression Profiling - methods ; Genes ; Genomes ; Genomics ; High-Throughput Screening Assays - methods ; Humans ; Liver ; Messenger RNA ; Molecules ; Oligonucleotide Array Sequence Analysis - methods ; Organ Specificity - genetics ; Reproducibility of Results ; Ribonucleic acid ; RNA ; RNA, Untranslated - genetics ; Sequence Analysis, RNA ; Sequencing ; Studies ; Tissue samples</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3707-3712</ispartof><rights>Copyright National Academy of Sciences Mar 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</citedby><cites>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41060996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41060996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21317363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weihong</creatorcontrib><creatorcontrib>Seok, Junhee</creatorcontrib><creatorcontrib>Mindrinos, Michael N</creatorcontrib><creatorcontrib>Schweitzer, Anthony C</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Wilhelmy, Julie</creatorcontrib><creatorcontrib>Clark, Tyson A</creatorcontrib><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Faham, Malek</creatorcontrib><creatorcontrib>Storey, John D</creatorcontrib><creatorcontrib>Moldawer, Lyle L</creatorcontrib><creatorcontrib>Maier, Ronald V</creatorcontrib><creatorcontrib>Tompkins, Ronald G</creatorcontrib><creatorcontrib>Wong, Wing Hung</creatorcontrib><creatorcontrib>Davis, Ronald W</creatorcontrib><creatorcontrib>Xiao, Wenzhong</creatorcontrib><creatorcontrib>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><creatorcontrib>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><title>Human transcriptome array for high-throughput clinical studies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Biological Sciences</subject><subject>Exons</subject><subject>Exons - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>Liver</subject><subject>Messenger RNA</subject><subject>Molecules</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Organ Specificity - genetics</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Untranslated - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Sequencing</subject><subject>Studies</subject><subject>Tissue samples</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRMQceGUdsYfiX2phKpCK1XiUHq2HK-z8SqJg50g9b-vV1u2pacZaX7z9J4eIR8RThFqdjaNJuUNVS0YgnxFVggKy4oreE1WALQuJaf8hLxLaQcASkh4S04oMqxZxVbk_GoZzFjM0YzJRj_NYXCFidHcF22IRee3XTl3MSzbblrmwvZ-9Nb0RZqXjXfpPXnTmj65D49zTe5-XP6-uCpvfv28vvh-U1oh-FyyyiDKTU05tAaVwca11DrTqspaRNdQgRV3ktLGOoUcLLO8QcZEI5pq49ianB90p6UZ3Ma6MTvu9RT9YOK9Dsbr_y-j7_Q2_NUMuEReZYFvjwIx_FlcmvXgk3V9b0YXlqRlhUIxLmQmv74gd2GJY06npeBKUCEgQ2cHyMaQUnTt0QqC3jej983op2byx-fnCY78vyqeAfvPJzmplWZ1llyTTwdgl-YQjwRHqECpfcQvh3trgjbb6JO-u6WALJvgMntnD7x7p9A</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Xu, Weihong</creator><creator>Seok, Junhee</creator><creator>Mindrinos, Michael N</creator><creator>Schweitzer, Anthony C</creator><creator>Jiang, Hui</creator><creator>Wilhelmy, Julie</creator><creator>Clark, Tyson A</creator><creator>Kapur, Karen</creator><creator>Xing, Yi</creator><creator>Faham, Malek</creator><creator>Storey, John D</creator><creator>Moldawer, Lyle L</creator><creator>Maier, Ronald V</creator><creator>Tompkins, Ronald G</creator><creator>Wong, Wing Hung</creator><creator>Davis, Ronald W</creator><creator>Xiao, Wenzhong</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Human transcriptome array for high-throughput clinical studies</title><author>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Biological Sciences</topic><topic>Exons</topic><topic>Exons - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>Liver</topic><topic>Messenger RNA</topic><topic>Molecules</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Organ Specificity - genetics</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Untranslated - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Sequencing</topic><topic>Studies</topic><topic>Tissue samples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weihong</creatorcontrib><creatorcontrib>Seok, Junhee</creatorcontrib><creatorcontrib>Mindrinos, Michael N</creatorcontrib><creatorcontrib>Schweitzer, Anthony C</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Wilhelmy, Julie</creatorcontrib><creatorcontrib>Clark, Tyson A</creatorcontrib><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Faham, Malek</creatorcontrib><creatorcontrib>Storey, John D</creatorcontrib><creatorcontrib>Moldawer, Lyle L</creatorcontrib><creatorcontrib>Maier, Ronald V</creatorcontrib><creatorcontrib>Tompkins, Ronald G</creatorcontrib><creatorcontrib>Wong, Wing Hung</creatorcontrib><creatorcontrib>Davis, Ronald W</creatorcontrib><creatorcontrib>Xiao, Wenzhong</creatorcontrib><creatorcontrib>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><creatorcontrib>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weihong</au><au>Seok, Junhee</au><au>Mindrinos, Michael N</au><au>Schweitzer, Anthony C</au><au>Jiang, Hui</au><au>Wilhelmy, Julie</au><au>Clark, Tyson A</au><au>Kapur, Karen</au><au>Xing, Yi</au><au>Faham, Malek</au><au>Storey, John D</au><au>Moldawer, Lyle L</au><au>Maier, Ronald V</au><au>Tompkins, Ronald G</au><au>Wong, Wing Hung</au><au>Davis, Ronald W</au><au>Xiao, Wenzhong</au><aucorp>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</aucorp><aucorp>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human transcriptome array for high-throughput clinical studies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>108</volume><issue>9</issue><spage>3707</spage><epage>3712</epage><pages>3707-3712</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21317363</pmid><doi>10.1073/pnas.1019753108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3707-3712 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_21317363 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alternative splicing Alternative Splicing - genetics Biological Sciences Exons Exons - genetics Gene expression Gene Expression Profiling - methods Genes Genomes Genomics High-Throughput Screening Assays - methods Humans Liver Messenger RNA Molecules Oligonucleotide Array Sequence Analysis - methods Organ Specificity - genetics Reproducibility of Results Ribonucleic acid RNA RNA, Untranslated - genetics Sequence Analysis, RNA Sequencing Studies Tissue samples |
title | Human transcriptome array for high-throughput clinical studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20transcriptome%20array%20for%20high-throughput%20clinical%20studies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Weihong&rft.aucorp=Inflammation%20and%20Host%20Response%20to%20Injury%20Large-Scale%20Collaborative%20Research%20Program&rft.date=2011-03-01&rft.volume=108&rft.issue=9&rft.spage=3707&rft.epage=3712&rft.pages=3707-3712&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1019753108&rft_dat=%3Cjstor_pubme%3E41060996%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854952550&rft_id=info:pmid/21317363&rft_jstor_id=41060996&rfr_iscdi=true |