Human transcriptome array for high-throughput clinical studies

A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-03, Vol.108 (9), p.3707-3712
Hauptverfasser: Xu, Weihong, Seok, Junhee, Mindrinos, Michael N, Schweitzer, Anthony C, Jiang, Hui, Wilhelmy, Julie, Clark, Tyson A, Kapur, Karen, Xing, Yi, Faham, Malek, Storey, John D, Moldawer, Lyle L, Maier, Ronald V, Tompkins, Ronald G, Wong, Wing Hung, Davis, Ronald W, Xiao, Wenzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3712
container_issue 9
container_start_page 3707
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Xu, Weihong
Seok, Junhee
Mindrinos, Michael N
Schweitzer, Anthony C
Jiang, Hui
Wilhelmy, Julie
Clark, Tyson A
Kapur, Karen
Xing, Yi
Faham, Malek
Storey, John D
Moldawer, Lyle L
Maier, Ronald V
Tompkins, Ronald G
Wong, Wing Hung
Davis, Ronald W
Xiao, Wenzhong
description A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.
doi_str_mv 10.1073/pnas.1019753108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21317363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41060996</jstor_id><sourcerecordid>41060996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMQceGUdsYfiX2phKpCK1XiUHq2HK-z8SqJg50g9b-vV1u2pacZaX7z9J4eIR8RThFqdjaNJuUNVS0YgnxFVggKy4oreE1WALQuJaf8hLxLaQcASkh4S04oMqxZxVbk_GoZzFjM0YzJRj_NYXCFidHcF22IRee3XTl3MSzbblrmwvZ-9Nb0RZqXjXfpPXnTmj65D49zTe5-XP6-uCpvfv28vvh-U1oh-FyyyiDKTU05tAaVwca11DrTqspaRNdQgRV3ktLGOoUcLLO8QcZEI5pq49ianB90p6UZ3Ma6MTvu9RT9YOK9Dsbr_y-j7_Q2_NUMuEReZYFvjwIx_FlcmvXgk3V9b0YXlqRlhUIxLmQmv74gd2GJY06npeBKUCEgQ2cHyMaQUnTt0QqC3jej983op2byx-fnCY78vyqeAfvPJzmplWZ1llyTTwdgl-YQjwRHqECpfcQvh3trgjbb6JO-u6WALJvgMntnD7x7p9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854952550</pqid></control><display><type>article</type><title>Human transcriptome array for high-throughput clinical studies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong</creator><creatorcontrib>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong ; Inflammation and Host Response to Injury Large-Scale Collaborative Research Program ; the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><description>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1019753108</identifier><identifier>PMID: 21317363</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Biological Sciences ; Exons ; Exons - genetics ; Gene expression ; Gene Expression Profiling - methods ; Genes ; Genomes ; Genomics ; High-Throughput Screening Assays - methods ; Humans ; Liver ; Messenger RNA ; Molecules ; Oligonucleotide Array Sequence Analysis - methods ; Organ Specificity - genetics ; Reproducibility of Results ; Ribonucleic acid ; RNA ; RNA, Untranslated - genetics ; Sequence Analysis, RNA ; Sequencing ; Studies ; Tissue samples</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3707-3712</ispartof><rights>Copyright National Academy of Sciences Mar 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</citedby><cites>FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41060996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41060996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21317363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weihong</creatorcontrib><creatorcontrib>Seok, Junhee</creatorcontrib><creatorcontrib>Mindrinos, Michael N</creatorcontrib><creatorcontrib>Schweitzer, Anthony C</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Wilhelmy, Julie</creatorcontrib><creatorcontrib>Clark, Tyson A</creatorcontrib><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Faham, Malek</creatorcontrib><creatorcontrib>Storey, John D</creatorcontrib><creatorcontrib>Moldawer, Lyle L</creatorcontrib><creatorcontrib>Maier, Ronald V</creatorcontrib><creatorcontrib>Tompkins, Ronald G</creatorcontrib><creatorcontrib>Wong, Wing Hung</creatorcontrib><creatorcontrib>Davis, Ronald W</creatorcontrib><creatorcontrib>Xiao, Wenzhong</creatorcontrib><creatorcontrib>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><creatorcontrib>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><title>Human transcriptome array for high-throughput clinical studies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Biological Sciences</subject><subject>Exons</subject><subject>Exons - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>Liver</subject><subject>Messenger RNA</subject><subject>Molecules</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Organ Specificity - genetics</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Untranslated - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Sequencing</subject><subject>Studies</subject><subject>Tissue samples</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRMQceGUdsYfiX2phKpCK1XiUHq2HK-z8SqJg50g9b-vV1u2pacZaX7z9J4eIR8RThFqdjaNJuUNVS0YgnxFVggKy4oreE1WALQuJaf8hLxLaQcASkh4S04oMqxZxVbk_GoZzFjM0YzJRj_NYXCFidHcF22IRee3XTl3MSzbblrmwvZ-9Nb0RZqXjXfpPXnTmj65D49zTe5-XP6-uCpvfv28vvh-U1oh-FyyyiDKTU05tAaVwca11DrTqspaRNdQgRV3ktLGOoUcLLO8QcZEI5pq49ianB90p6UZ3Ma6MTvu9RT9YOK9Dsbr_y-j7_Q2_NUMuEReZYFvjwIx_FlcmvXgk3V9b0YXlqRlhUIxLmQmv74gd2GJY06npeBKUCEgQ2cHyMaQUnTt0QqC3jej983op2byx-fnCY78vyqeAfvPJzmplWZ1llyTTwdgl-YQjwRHqECpfcQvh3trgjbb6JO-u6WALJvgMntnD7x7p9A</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Xu, Weihong</creator><creator>Seok, Junhee</creator><creator>Mindrinos, Michael N</creator><creator>Schweitzer, Anthony C</creator><creator>Jiang, Hui</creator><creator>Wilhelmy, Julie</creator><creator>Clark, Tyson A</creator><creator>Kapur, Karen</creator><creator>Xing, Yi</creator><creator>Faham, Malek</creator><creator>Storey, John D</creator><creator>Moldawer, Lyle L</creator><creator>Maier, Ronald V</creator><creator>Tompkins, Ronald G</creator><creator>Wong, Wing Hung</creator><creator>Davis, Ronald W</creator><creator>Xiao, Wenzhong</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110301</creationdate><title>Human transcriptome array for high-throughput clinical studies</title><author>Xu, Weihong ; Seok, Junhee ; Mindrinos, Michael N ; Schweitzer, Anthony C ; Jiang, Hui ; Wilhelmy, Julie ; Clark, Tyson A ; Kapur, Karen ; Xing, Yi ; Faham, Malek ; Storey, John D ; Moldawer, Lyle L ; Maier, Ronald V ; Tompkins, Ronald G ; Wong, Wing Hung ; Davis, Ronald W ; Xiao, Wenzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-36a118d7240fa19a1bef2ceaf96cc11eb25164e822bce9140c3c4b1335b5b6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Biological Sciences</topic><topic>Exons</topic><topic>Exons - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>Liver</topic><topic>Messenger RNA</topic><topic>Molecules</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Organ Specificity - genetics</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Untranslated - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Sequencing</topic><topic>Studies</topic><topic>Tissue samples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weihong</creatorcontrib><creatorcontrib>Seok, Junhee</creatorcontrib><creatorcontrib>Mindrinos, Michael N</creatorcontrib><creatorcontrib>Schweitzer, Anthony C</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Wilhelmy, Julie</creatorcontrib><creatorcontrib>Clark, Tyson A</creatorcontrib><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Faham, Malek</creatorcontrib><creatorcontrib>Storey, John D</creatorcontrib><creatorcontrib>Moldawer, Lyle L</creatorcontrib><creatorcontrib>Maier, Ronald V</creatorcontrib><creatorcontrib>Tompkins, Ronald G</creatorcontrib><creatorcontrib>Wong, Wing Hung</creatorcontrib><creatorcontrib>Davis, Ronald W</creatorcontrib><creatorcontrib>Xiao, Wenzhong</creatorcontrib><creatorcontrib>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><creatorcontrib>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weihong</au><au>Seok, Junhee</au><au>Mindrinos, Michael N</au><au>Schweitzer, Anthony C</au><au>Jiang, Hui</au><au>Wilhelmy, Julie</au><au>Clark, Tyson A</au><au>Kapur, Karen</au><au>Xing, Yi</au><au>Faham, Malek</au><au>Storey, John D</au><au>Moldawer, Lyle L</au><au>Maier, Ronald V</au><au>Tompkins, Ronald G</au><au>Wong, Wing Hung</au><au>Davis, Ronald W</au><au>Xiao, Wenzhong</au><aucorp>Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</aucorp><aucorp>the Inflammation and Host Response to Injury Large-Scale Collaborative Research Program</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human transcriptome array for high-throughput clinical studies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>108</volume><issue>9</issue><spage>3707</spage><epage>3712</epage><pages>3707-3712</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21317363</pmid><doi>10.1073/pnas.1019753108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-03, Vol.108 (9), p.3707-3712
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_21317363
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alternative splicing
Alternative Splicing - genetics
Biological Sciences
Exons
Exons - genetics
Gene expression
Gene Expression Profiling - methods
Genes
Genomes
Genomics
High-Throughput Screening Assays - methods
Humans
Liver
Messenger RNA
Molecules
Oligonucleotide Array Sequence Analysis - methods
Organ Specificity - genetics
Reproducibility of Results
Ribonucleic acid
RNA
RNA, Untranslated - genetics
Sequence Analysis, RNA
Sequencing
Studies
Tissue samples
title Human transcriptome array for high-throughput clinical studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20transcriptome%20array%20for%20high-throughput%20clinical%20studies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Weihong&rft.aucorp=Inflammation%20and%20Host%20Response%20to%20Injury%20Large-Scale%20Collaborative%20Research%20Program&rft.date=2011-03-01&rft.volume=108&rft.issue=9&rft.spage=3707&rft.epage=3712&rft.pages=3707-3712&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1019753108&rft_dat=%3Cjstor_pubme%3E41060996%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854952550&rft_id=info:pmid/21317363&rft_jstor_id=41060996&rfr_iscdi=true