Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition

This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2011-10, Vol.33 (10), p.2066-2080
Hauptverfasser: Bianne-Bernard, A.-L, Menasri, F., Mohamad, R. Al-Hajj, Mokbel, C., Kermorvant, C., Likforman-Sulem, Laurence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2080
container_issue 10
container_start_page 2066
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 33
creator Bianne-Bernard, A.-L
Menasri, F.
Mohamad, R. Al-Hajj
Mokbel, C.
Kermorvant, C.
Likforman-Sulem, Laurence
description This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.
doi_str_mv 10.1109/TPAMI.2011.22
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_21282849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5708152</ieee_id><sourcerecordid>2433293661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a761fd8bd8c77dcb72c888b7f837d88a5530041272284acdcb1bf093d85070bd3</originalsourceid><addsrcrecordid>eNpd0MFrHCEUBnApKc027TGnQJBCIZfZ-nSMzjFsk-xClpY2pUdx1AmGGU11hib_fZzuNoWeBN_P58eH0DGQJQBpPt1-vdhulpQALCl9hRbQsKZinDUHaEHgnFZSUnmI3uZ8TwjUnLA36JACLbd1s0DfPz8FPXiDdbB4FcPoHsdJ93gTupgGPfoYsA94vd3ibbSu9-EOlwleF_87-XF0Af-MyeJvzsS74OcH79DrTvfZvd-fR-jH1eXtal3dfLnerC5uKsMEGSstzqGzsrXSCGFNK6iRUraik0xYKTXnjJAaqKAlqjZFQNuRhlnJiSCtZUfobLf3IcVfk8ujGnw2ru91cHHKCgQAL19xWuiH_-h9nFIo6ZSUtWRMsBlVO2RSzDm5Tj0kP-j0pICouWz1p2w1l63o7E_3S6d2cPZF_223gI97oLPRfZd0MD7_czUHxgUUd7Jz3jn3MuaCSCjZnwHHpI6F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884833732</pqid></control><display><type>article</type><title>Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Bianne-Bernard, A.-L ; Menasri, F. ; Mohamad, R. Al-Hajj ; Mokbel, C. ; Kermorvant, C. ; Likforman-Sulem, Laurence</creator><creatorcontrib>Bianne-Bernard, A.-L ; Menasri, F. ; Mohamad, R. Al-Hajj ; Mokbel, C. ; Kermorvant, C. ; Likforman-Sulem, Laurence</creatorcontrib><description>This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2011.22</identifier><identifier>PMID: 21282849</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computational modeling ; Computer science; control theory; systems ; Context ; Context modeling ; context-dependent HMMs ; Decision trees ; Exact sciences and technology ; Feature extraction ; Handwriting recognition ; Hidden Markov models ; Latin and Arabic handwriting recognition ; neural-network combination ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Studies</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2011-10, Vol.33 (10), p.2066-2080</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a761fd8bd8c77dcb72c888b7f837d88a5530041272284acdcb1bf093d85070bd3</citedby><cites>FETCH-LOGICAL-c370t-a761fd8bd8c77dcb72c888b7f837d88a5530041272284acdcb1bf093d85070bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5708152$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5708152$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24513571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21282849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianne-Bernard, A.-L</creatorcontrib><creatorcontrib>Menasri, F.</creatorcontrib><creatorcontrib>Mohamad, R. Al-Hajj</creatorcontrib><creatorcontrib>Mokbel, C.</creatorcontrib><creatorcontrib>Kermorvant, C.</creatorcontrib><creatorcontrib>Likforman-Sulem, Laurence</creatorcontrib><title>Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Context</subject><subject>Context modeling</subject><subject>context-dependent HMMs</subject><subject>Decision trees</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Latin and Arabic handwriting recognition</subject><subject>neural-network combination</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Studies</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0MFrHCEUBnApKc027TGnQJBCIZfZ-nSMzjFsk-xClpY2pUdx1AmGGU11hib_fZzuNoWeBN_P58eH0DGQJQBpPt1-vdhulpQALCl9hRbQsKZinDUHaEHgnFZSUnmI3uZ8TwjUnLA36JACLbd1s0DfPz8FPXiDdbB4FcPoHsdJ93gTupgGPfoYsA94vd3ibbSu9-EOlwleF_87-XF0Af-MyeJvzsS74OcH79DrTvfZvd-fR-jH1eXtal3dfLnerC5uKsMEGSstzqGzsrXSCGFNK6iRUraik0xYKTXnjJAaqKAlqjZFQNuRhlnJiSCtZUfobLf3IcVfk8ujGnw2ru91cHHKCgQAL19xWuiH_-h9nFIo6ZSUtWRMsBlVO2RSzDm5Tj0kP-j0pICouWz1p2w1l63o7E_3S6d2cPZF_223gI97oLPRfZd0MD7_czUHxgUUd7Jz3jn3MuaCSCjZnwHHpI6F</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Bianne-Bernard, A.-L</creator><creator>Menasri, F.</creator><creator>Mohamad, R. Al-Hajj</creator><creator>Mokbel, C.</creator><creator>Kermorvant, C.</creator><creator>Likforman-Sulem, Laurence</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition</title><author>Bianne-Bernard, A.-L ; Menasri, F. ; Mohamad, R. Al-Hajj ; Mokbel, C. ; Kermorvant, C. ; Likforman-Sulem, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a761fd8bd8c77dcb72c888b7f837d88a5530041272284acdcb1bf093d85070bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Context</topic><topic>Context modeling</topic><topic>context-dependent HMMs</topic><topic>Decision trees</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Latin and Arabic handwriting recognition</topic><topic>neural-network combination</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianne-Bernard, A.-L</creatorcontrib><creatorcontrib>Menasri, F.</creatorcontrib><creatorcontrib>Mohamad, R. Al-Hajj</creatorcontrib><creatorcontrib>Mokbel, C.</creatorcontrib><creatorcontrib>Kermorvant, C.</creatorcontrib><creatorcontrib>Likforman-Sulem, Laurence</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bianne-Bernard, A.-L</au><au>Menasri, F.</au><au>Mohamad, R. Al-Hajj</au><au>Mokbel, C.</au><au>Kermorvant, C.</au><au>Likforman-Sulem, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>33</volume><issue>10</issue><spage>2066</spage><epage>2080</epage><pages>2066-2080</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>21282849</pmid><doi>10.1109/TPAMI.2011.22</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2011-10, Vol.33 (10), p.2066-2080
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_21282849
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computational modeling
Computer science
control theory
systems
Context
Context modeling
context-dependent HMMs
Decision trees
Exact sciences and technology
Feature extraction
Handwriting recognition
Hidden Markov models
Latin and Arabic handwriting recognition
neural-network combination
Pattern recognition. Digital image processing. Computational geometry
Pixel
Studies
title Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20and%20Contextual%20Information%20in%20HMM%20Modeling%20for%20Handwritten%20Word%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Bianne-Bernard,%20A.-L&rft.date=2011-10-01&rft.volume=33&rft.issue=10&rft.spage=2066&rft.epage=2080&rft.pages=2066-2080&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2011.22&rft_dat=%3Cproquest_RIE%3E2433293661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884833732&rft_id=info:pmid/21282849&rft_ieee_id=5708152&rfr_iscdi=true