Penguin heat-retention structures evolved in a greenhouse Earth
Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perha...
Gespeichert in:
Veröffentlicht in: | Biology letters (2005) 2011-06, Vol.7 (3), p.461-464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 3 |
container_start_page | 461 |
container_title | Biology letters (2005) |
container_volume | 7 |
creator | Thomas, Daniel B. Ksepka, Daniel T. Fordyce, R. Ewan |
description | Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets. |
doi_str_mv | 10.1098/rsbl.2010.0993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21177693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>904473846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a578t-a28d76ede79f98be74269bba3a88d149c0b8c7201ab72bc7457b1c6c9292750d3</originalsourceid><addsrcrecordid>eNp9kEtvEzEUhS0EoqWwZYlmx2qCHzNz7Q0IqtIiRSriIbGzbM9N4moyDrYnUvrrcZQSFRBd2Vf-fM65h5CXjM4YVfJNTHaYcVpGqpR4RE4ZNE2tWvjx-Hjv2Al5ltINpQKAtk_JCWcMoFPilLz7jONy8mO1QpPriBnH7MNYpRwnl6eIqcJtGLbYVwUy1TIijqswJawuTMyr5-TJwgwJX9ydZ-T7x4tv51f1_Pry0_n7eW1akLk2XPbQYY-gFkpahIZ3ylojjJQ9a5SjVjooexgL3DpoWrDMdU5xxaGlvTgjbw-6m8musXclZjSD3kS_NnGng_H6z5fRr_QybLWgCmQri8DrO4EYfk6Ysl775HAYzIhlHa1o04CQTVfI2YF0MaQUcXF0YVTvS9f70vW-dL0vvXx4dT_bEf_dcgHMAYhhV0oKzmPe6ZswxbGM-svXD_MteKGpFIy2LeedvvWbgw1on9KEWvzl-m8I8ZDHf6L_AoqssbM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904473846</pqid></control><display><type>article</type><title>Penguin heat-retention structures evolved in a greenhouse Earth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Thomas, Daniel B. ; Ksepka, Daniel T. ; Fordyce, R. Ewan</creator><creatorcontrib>Thomas, Daniel B. ; Ksepka, Daniel T. ; Fordyce, R. Ewan</creatorcontrib><description>Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.</description><identifier>ISSN: 1744-9561</identifier><identifier>EISSN: 1744-957X</identifier><identifier>DOI: 10.1098/rsbl.2010.0993</identifier><identifier>PMID: 21177693</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Biological ; Animals ; Biological Evolution ; Body Temperature Regulation ; Counter-Current ; Feeding Behavior ; Fossil ; Fossils ; Humerus - anatomy & histology ; Marine ; Palaeontology ; Penguin ; Spheniscidae - anatomy & histology ; Spheniscidae - physiology ; Sphenisciformes ; Thermoregulation</subject><ispartof>Biology letters (2005), 2011-06, Vol.7 (3), p.461-464</ispartof><rights>This Journal is © 2010 The Royal Society</rights><rights>This Journal is © 2010 The Royal Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a578t-a28d76ede79f98be74269bba3a88d149c0b8c7201ab72bc7457b1c6c9292750d3</citedby><cites>FETCH-LOGICAL-a578t-a28d76ede79f98be74269bba3a88d149c0b8c7201ab72bc7457b1c6c9292750d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097858/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097858/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Daniel B.</creatorcontrib><creatorcontrib>Ksepka, Daniel T.</creatorcontrib><creatorcontrib>Fordyce, R. Ewan</creatorcontrib><title>Penguin heat-retention structures evolved in a greenhouse Earth</title><title>Biology letters (2005)</title><addtitle>Biol. Lett</addtitle><addtitle>Biol Lett</addtitle><description>Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.</description><subject>Adaptation, Biological</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Body Temperature Regulation</subject><subject>Counter-Current</subject><subject>Feeding Behavior</subject><subject>Fossil</subject><subject>Fossils</subject><subject>Humerus - anatomy & histology</subject><subject>Marine</subject><subject>Palaeontology</subject><subject>Penguin</subject><subject>Spheniscidae - anatomy & histology</subject><subject>Spheniscidae - physiology</subject><subject>Sphenisciformes</subject><subject>Thermoregulation</subject><issn>1744-9561</issn><issn>1744-957X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtvEzEUhS0EoqWwZYlmx2qCHzNz7Q0IqtIiRSriIbGzbM9N4moyDrYnUvrrcZQSFRBd2Vf-fM65h5CXjM4YVfJNTHaYcVpGqpR4RE4ZNE2tWvjx-Hjv2Al5ltINpQKAtk_JCWcMoFPilLz7jONy8mO1QpPriBnH7MNYpRwnl6eIqcJtGLbYVwUy1TIijqswJawuTMyr5-TJwgwJX9ydZ-T7x4tv51f1_Pry0_n7eW1akLk2XPbQYY-gFkpahIZ3ylojjJQ9a5SjVjooexgL3DpoWrDMdU5xxaGlvTgjbw-6m8musXclZjSD3kS_NnGng_H6z5fRr_QybLWgCmQri8DrO4EYfk6Ysl775HAYzIhlHa1o04CQTVfI2YF0MaQUcXF0YVTvS9f70vW-dL0vvXx4dT_bEf_dcgHMAYhhV0oKzmPe6ZswxbGM-svXD_MteKGpFIy2LeedvvWbgw1on9KEWvzl-m8I8ZDHf6L_AoqssbM</recordid><startdate>20110623</startdate><enddate>20110623</enddate><creator>Thomas, Daniel B.</creator><creator>Ksepka, Daniel T.</creator><creator>Fordyce, R. Ewan</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20110623</creationdate><title>Penguin heat-retention structures evolved in a greenhouse Earth</title><author>Thomas, Daniel B. ; Ksepka, Daniel T. ; Fordyce, R. Ewan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a578t-a28d76ede79f98be74269bba3a88d149c0b8c7201ab72bc7457b1c6c9292750d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation, Biological</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Body Temperature Regulation</topic><topic>Counter-Current</topic><topic>Feeding Behavior</topic><topic>Fossil</topic><topic>Fossils</topic><topic>Humerus - anatomy & histology</topic><topic>Marine</topic><topic>Palaeontology</topic><topic>Penguin</topic><topic>Spheniscidae - anatomy & histology</topic><topic>Spheniscidae - physiology</topic><topic>Sphenisciformes</topic><topic>Thermoregulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Daniel B.</creatorcontrib><creatorcontrib>Ksepka, Daniel T.</creatorcontrib><creatorcontrib>Fordyce, R. Ewan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biology letters (2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Daniel B.</au><au>Ksepka, Daniel T.</au><au>Fordyce, R. Ewan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penguin heat-retention structures evolved in a greenhouse Earth</atitle><jtitle>Biology letters (2005)</jtitle><stitle>Biol. Lett</stitle><addtitle>Biol Lett</addtitle><date>2011-06-23</date><risdate>2011</risdate><volume>7</volume><issue>3</issue><spage>461</spage><epage>464</epage><pages>461-464</pages><issn>1744-9561</issn><eissn>1744-957X</eissn><abstract>Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>21177693</pmid><doi>10.1098/rsbl.2010.0993</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-9561 |
ispartof | Biology letters (2005), 2011-06, Vol.7 (3), p.461-464 |
issn | 1744-9561 1744-957X |
language | eng |
recordid | cdi_pubmed_primary_21177693 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adaptation, Biological Animals Biological Evolution Body Temperature Regulation Counter-Current Feeding Behavior Fossil Fossils Humerus - anatomy & histology Marine Palaeontology Penguin Spheniscidae - anatomy & histology Spheniscidae - physiology Sphenisciformes Thermoregulation |
title | Penguin heat-retention structures evolved in a greenhouse Earth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penguin%20heat-retention%20structures%20evolved%20in%20a%20greenhouse%20Earth&rft.jtitle=Biology%20letters%20(2005)&rft.au=Thomas,%20Daniel%20B.&rft.date=2011-06-23&rft.volume=7&rft.issue=3&rft.spage=461&rft.epage=464&rft.pages=461-464&rft.issn=1744-9561&rft.eissn=1744-957X&rft_id=info:doi/10.1098/rsbl.2010.0993&rft_dat=%3Cproquest_pubme%3E904473846%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904473846&rft_id=info:pmid/21177693&rfr_iscdi=true |