Conversion of Hexagonal Sb2Te3 Nanoplates into Nanorings Driven by Growth Temperature
We describe a novel route for the conversion of hexagonal Sb2Te3 nanoplates into nanorings driven by growth temperature in a simple solvothermal process. The transmission electron microscopy was employed to investigate systemically the morphology, size, crystallinity, and microstructure of the as-pr...
Gespeichert in:
Veröffentlicht in: | Langmuir 2011-01, Vol.27 (2), p.815-819 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a novel route for the conversion of hexagonal Sb2Te3 nanoplates into nanorings driven by growth temperature in a simple solvothermal process. The transmission electron microscopy was employed to investigate systemically the morphology, size, crystallinity, and microstructure of the as-prepared products. The experiments indicated that the growth temperature had a great effect on the morphology of antimony telluride nanostructures. When the experiments were conducted at 200 °C, the hexagonal antimony telluride nanoplates were obtained. However, if the experiments were carried out at higher temperature of 230 °C, the hexagonal antimony telluride nanorings were achieved by dissolution of the inner part with a higher density of defects of the hexagonal nanoplates for the first time. A possible formation mechanism was proposed on the basis of experimental results and analysis. This work may open a new rational route for the synthesis of the hexagonal antimony telluride nanorings, which may have scientific and technological applications in various functional devices. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la103937f |