Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities

Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2010-11, Vol.91 (11), p.3354-3364
Hauptverfasser: Breininger, David R, Nichols, James D, Duncan, Brean W, Stolen, Eric D, Carter, Geoffrey M, Hunt, Danny K, Drese, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3364
container_issue 11
container_start_page 3354
container_title Ecology (Durham)
container_volume 91
creator Breininger, David R
Nichols, James D
Duncan, Brean W
Stolen, Eric D
Carter, Geoffrey M
Hunt, Danny K
Drese, John H
description Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay ( Aphelocoma coerulescens ), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.
doi_str_mv 10.1890/09-0964.1
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21141196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20788168</jstor_id><sourcerecordid>20788168</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4944-6e2a310625a6c8ca10b4fcb1a9046c4abdcefc4e56d38b314ae49fdeecfd5f6b3</originalsourceid><addsrcrecordid>eNqNkkGL1TAUhYMoznN04Q9QiyLiomNuk6aJO3nMqDDiQmfhKtymyZhH27xJWuT9e1P6dEAUzCbk5rvncnJCyGOgZyAVfUNVSZXgZ3CHbEAxVSpo6F2yoRSqUolanpAHKe1oXsDlfXJSAXAAJTYEP8395NOEky2G0Nnej9dFcMV3bH0uFt1hxMGb9LZwaKYQU4HOWTMt2EUfou-wSCbObTFFHJOffBiLfQxt7u_zyaaH5J7DPtlHx_2UXF2cf91-KC8_v_-4fXdZIlecl8JWyICKqkZhpEGgLXemBVSUC8Ox7Yx1httadEy2DDharlxnrXFd7UTLTsmrVTdPv5ltmvTgk7F9j6MNc9KygoaJWjT_Q9ZKykpm8vkf5C7Mccw2dCMYV4xSlaHXK2RiSClap_fRDxgPGqhe8tFU6SUfDZl9ehSc28F2v8lfgWTg5RHAZLB3-VGNT7cc40xysXBi5X743h7-PVGfb79VFKgCAMZqnhufrI27lOO8FaaNlCAWy8_We4dB43XMw6--ZAWR_46SIBcPL1YCp8M-jNom_IvTn-sOxYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763493009</pqid></control><display><type>article</type><title>Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities</title><source>MEDLINE</source><source>Wiley Online Library</source><source>JSTOR</source><creator>Breininger, David R ; Nichols, James D ; Duncan, Brean W ; Stolen, Eric D ; Carter, Geoffrey M ; Hunt, Danny K ; Drese, John H</creator><contributor>Sauer, JR</contributor><creatorcontrib>Breininger, David R ; Nichols, James D ; Duncan, Brean W ; Stolen, Eric D ; Carter, Geoffrey M ; Hunt, Danny K ; Drese, John H ; Sauer, JR</creatorcontrib><description>Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay ( Aphelocoma coerulescens ), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/09-0964.1</identifier><identifier>PMID: 21141196</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Aphelocoma coerulescens ; Biological and medical sciences ; Birds ; capture-recapture ; coasts ; Conservation biology ; cutting ; decision making ; disturbance ; Ecological modeling ; Ecosystem ; Ecosystem studies ; Ecosystems ; fire ; fires ; Florida ; Florida Scrub-Jay ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Habitat conservation ; Habitats ; indicator species ; Kennedy Space Center/Merritt Island National Wildlife Refuge ; land cover ; Landscape ecology ; Markov analysis ; Markov chain ; Metapopulation ecology ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Models, Biological ; multistate models ; patch dynamics ; Plants ; plants (botany) ; Population Dynamics ; remote sensing ; restoration ; scrub ; shrublands ; Songbirds - physiology ; territoriality ; Transition probabilities ; Urban ecology ; USA ; Wildlife habitats</subject><ispartof>Ecology (Durham), 2010-11, Vol.91 (11), p.3354-3364</ispartof><rights>Ecological Society of America</rights><rights>Copyright © 2010 Ecological Society of America</rights><rights>2010 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4944-6e2a310625a6c8ca10b4fcb1a9046c4abdcefc4e56d38b314ae49fdeecfd5f6b3</citedby><cites>FETCH-LOGICAL-a4944-6e2a310625a6c8ca10b4fcb1a9046c4abdcefc4e56d38b314ae49fdeecfd5f6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20788168$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20788168$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27922,27923,45572,45573,58015,58248</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23438466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21141196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sauer, JR</contributor><creatorcontrib>Breininger, David R</creatorcontrib><creatorcontrib>Nichols, James D</creatorcontrib><creatorcontrib>Duncan, Brean W</creatorcontrib><creatorcontrib>Stolen, Eric D</creatorcontrib><creatorcontrib>Carter, Geoffrey M</creatorcontrib><creatorcontrib>Hunt, Danny K</creatorcontrib><creatorcontrib>Drese, John H</creatorcontrib><title>Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay ( Aphelocoma coerulescens ), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Aphelocoma coerulescens</subject><subject>Biological and medical sciences</subject><subject>Birds</subject><subject>capture-recapture</subject><subject>coasts</subject><subject>Conservation biology</subject><subject>cutting</subject><subject>decision making</subject><subject>disturbance</subject><subject>Ecological modeling</subject><subject>Ecosystem</subject><subject>Ecosystem studies</subject><subject>Ecosystems</subject><subject>fire</subject><subject>fires</subject><subject>Florida</subject><subject>Florida Scrub-Jay</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Habitat conservation</subject><subject>Habitats</subject><subject>indicator species</subject><subject>Kennedy Space Center/Merritt Island National Wildlife Refuge</subject><subject>land cover</subject><subject>Landscape ecology</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Metapopulation ecology</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Models, Biological</subject><subject>multistate models</subject><subject>patch dynamics</subject><subject>Plants</subject><subject>plants (botany)</subject><subject>Population Dynamics</subject><subject>remote sensing</subject><subject>restoration</subject><subject>scrub</subject><subject>shrublands</subject><subject>Songbirds - physiology</subject><subject>territoriality</subject><subject>Transition probabilities</subject><subject>Urban ecology</subject><subject>USA</subject><subject>Wildlife habitats</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkGL1TAUhYMoznN04Q9QiyLiomNuk6aJO3nMqDDiQmfhKtymyZhH27xJWuT9e1P6dEAUzCbk5rvncnJCyGOgZyAVfUNVSZXgZ3CHbEAxVSpo6F2yoRSqUolanpAHKe1oXsDlfXJSAXAAJTYEP8395NOEky2G0Nnej9dFcMV3bH0uFt1hxMGb9LZwaKYQU4HOWTMt2EUfou-wSCbObTFFHJOffBiLfQxt7u_zyaaH5J7DPtlHx_2UXF2cf91-KC8_v_-4fXdZIlecl8JWyICKqkZhpEGgLXemBVSUC8Ox7Yx1httadEy2DDharlxnrXFd7UTLTsmrVTdPv5ltmvTgk7F9j6MNc9KygoaJWjT_Q9ZKykpm8vkf5C7Mccw2dCMYV4xSlaHXK2RiSClap_fRDxgPGqhe8tFU6SUfDZl9ehSc28F2v8lfgWTg5RHAZLB3-VGNT7cc40xysXBi5X743h7-PVGfb79VFKgCAMZqnhufrI27lOO8FaaNlCAWy8_We4dB43XMw6--ZAWR_46SIBcPL1YCp8M-jNom_IvTn-sOxYU</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Breininger, David R</creator><creator>Nichols, James D</creator><creator>Duncan, Brean W</creator><creator>Stolen, Eric D</creator><creator>Carter, Geoffrey M</creator><creator>Hunt, Danny K</creator><creator>Drese, John H</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7U6</scope></search><sort><creationdate>201011</creationdate><title>Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities</title><author>Breininger, David R ; Nichols, James D ; Duncan, Brean W ; Stolen, Eric D ; Carter, Geoffrey M ; Hunt, Danny K ; Drese, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4944-6e2a310625a6c8ca10b4fcb1a9046c4abdcefc4e56d38b314ae49fdeecfd5f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Aphelocoma coerulescens</topic><topic>Biological and medical sciences</topic><topic>Birds</topic><topic>capture-recapture</topic><topic>coasts</topic><topic>Conservation biology</topic><topic>cutting</topic><topic>decision making</topic><topic>disturbance</topic><topic>Ecological modeling</topic><topic>Ecosystem</topic><topic>Ecosystem studies</topic><topic>Ecosystems</topic><topic>fire</topic><topic>fires</topic><topic>Florida</topic><topic>Florida Scrub-Jay</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Habitat conservation</topic><topic>Habitats</topic><topic>indicator species</topic><topic>Kennedy Space Center/Merritt Island National Wildlife Refuge</topic><topic>land cover</topic><topic>Landscape ecology</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Metapopulation ecology</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Models, Biological</topic><topic>multistate models</topic><topic>patch dynamics</topic><topic>Plants</topic><topic>plants (botany)</topic><topic>Population Dynamics</topic><topic>remote sensing</topic><topic>restoration</topic><topic>scrub</topic><topic>shrublands</topic><topic>Songbirds - physiology</topic><topic>territoriality</topic><topic>Transition probabilities</topic><topic>Urban ecology</topic><topic>USA</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breininger, David R</creatorcontrib><creatorcontrib>Nichols, James D</creatorcontrib><creatorcontrib>Duncan, Brean W</creatorcontrib><creatorcontrib>Stolen, Eric D</creatorcontrib><creatorcontrib>Carter, Geoffrey M</creatorcontrib><creatorcontrib>Hunt, Danny K</creatorcontrib><creatorcontrib>Drese, John H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breininger, David R</au><au>Nichols, James D</au><au>Duncan, Brean W</au><au>Stolen, Eric D</au><au>Carter, Geoffrey M</au><au>Hunt, Danny K</au><au>Drese, John H</au><au>Sauer, JR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2010-11</date><risdate>2010</risdate><volume>91</volume><issue>11</issue><spage>3354</spage><epage>3364</epage><pages>3354-3364</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay ( Aphelocoma coerulescens ), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>21141196</pmid><doi>10.1890/09-0964.1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2010-11, Vol.91 (11), p.3354-3364
issn 0012-9658
1939-9170
language eng
recordid cdi_pubmed_primary_21141196
source MEDLINE; Wiley Online Library; JSTOR
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Aphelocoma coerulescens
Biological and medical sciences
Birds
capture-recapture
coasts
Conservation biology
cutting
decision making
disturbance
Ecological modeling
Ecosystem
Ecosystem studies
Ecosystems
fire
fires
Florida
Florida Scrub-Jay
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Habitat conservation
Habitats
indicator species
Kennedy Space Center/Merritt Island National Wildlife Refuge
land cover
Landscape ecology
Markov analysis
Markov chain
Metapopulation ecology
Methods and techniques (sampling, tagging, trapping, modelling...)
Models, Biological
multistate models
patch dynamics
Plants
plants (botany)
Population Dynamics
remote sensing
restoration
scrub
shrublands
Songbirds - physiology
territoriality
Transition probabilities
Urban ecology
USA
Wildlife habitats
title Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistate%20modeling%20of%20habitat%20dynamics:%20factors%20affecting%20Florida%20scrub%20transition%20probabilities&rft.jtitle=Ecology%20(Durham)&rft.au=Breininger,%20David%20R&rft.date=2010-11&rft.volume=91&rft.issue=11&rft.spage=3354&rft.epage=3364&rft.pages=3354-3364&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/09-0964.1&rft_dat=%3Cjstor_pubme%3E20788168%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763493009&rft_id=info:pmid/21141196&rft_jstor_id=20788168&rfr_iscdi=true