A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface

Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O ad we mainly observe OH formation on step sites. When terrace sites are al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (4), p.1629-1638
Hauptverfasser: van der Niet, Maria J. T. C, den Dunnen, Angela, Juurlink, Ludo B. F, Koper, Marc T. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1638
container_issue 4
container_start_page 1629
container_title Physical chemistry chemical physics : PCCP
container_volume 13
creator van der Niet, Maria J. T. C
den Dunnen, Angela
Juurlink, Ludo B. F
Koper, Marc T. M
description Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O ad we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O ad , OH terrace formation is favored over OH step formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H 2 O. This is a gradual process: with increasing O less OH step is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O step as the most stable water dissociation product on the step. Upon co-adsorption of O ad and H 2 O on Pt(553), the amount of OH terrace increases with increasing O at the expense of OH step .
doi_str_mv 10.1039/c0cp01162b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21125094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671405499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-7d1f30f48ff30272712ab3342ccfc3435f7a4a25034bb1accbb7d94cb59913d33</originalsourceid><addsrcrecordid>eNp90ctP3DAQB2ALFfFqL723MocKqJTi8dhJfITlKVHtHuAc-SkWZTfBTg7739dll-XGaUaeT6PRz4R8B_YHGKpzy2zPAEpudsgBiBILxWrxZdtX5T45TOmFMQYScI_scwAumRIH5O8FdX7Q89Y7-ji7omkY3Yp2gd7xKdVLR_voC-1SF00WU9ot6fDsM_N9nx9mw6mUeEbTGIO2_ivZDbpN_tumHpGnm-vHyV3xML29n1w8FBZVNRSVg4AsiDrkwiteAdcGUXBrg0WBMlRa6HwhCmNAW2tM5ZSwRioF6BCPyMl6bx-719GnoVnMk_Vtq5e-G1NTowRQNcgsTz-VUFYgmBRKZfp7TW3sUoo-NH2cL3RcNcCa_0E3EzaZvQV9mfHPzd7RLLzb0vdkM_i1ATpZ3Yaol3aePhzWnJe8zu547WKy2-nHjza9C9n8-MzgPyLrlpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671405499</pqid></control><display><type>article</type><title>A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>van der Niet, Maria J. T. C ; den Dunnen, Angela ; Juurlink, Ludo B. F ; Koper, Marc T. M</creator><creatorcontrib>van der Niet, Maria J. T. C ; den Dunnen, Angela ; Juurlink, Ludo B. F ; Koper, Marc T. M</creatorcontrib><description>Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O ad we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O ad , OH terrace formation is favored over OH step formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H 2 O. This is a gradual process: with increasing O less OH step is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O step as the most stable water dissociation product on the step. Upon co-adsorption of O ad and H 2 O on Pt(553), the amount of OH terrace increases with increasing O at the expense of OH step .</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp01162b</identifier><identifier>PMID: 21125094</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Binding energy ; Bonding ; Chemistry ; Desorption ; Exact sciences and technology ; General and physical chemistry ; Multilayers ; Networks ; Physical chemistry ; Stepped ; Surface physical chemistry ; Terraces</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-01, Vol.13 (4), p.1629-1638</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-7d1f30f48ff30272712ab3342ccfc3435f7a4a25034bb1accbb7d94cb59913d33</citedby><cites>FETCH-LOGICAL-c397t-7d1f30f48ff30272712ab3342ccfc3435f7a4a25034bb1accbb7d94cb59913d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23822628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21125094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Niet, Maria J. T. C</creatorcontrib><creatorcontrib>den Dunnen, Angela</creatorcontrib><creatorcontrib>Juurlink, Ludo B. F</creatorcontrib><creatorcontrib>Koper, Marc T. M</creatorcontrib><title>A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O ad we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O ad , OH terrace formation is favored over OH step formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H 2 O. This is a gradual process: with increasing O less OH step is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O step as the most stable water dissociation product on the step. Upon co-adsorption of O ad and H 2 O on Pt(553), the amount of OH terrace increases with increasing O at the expense of OH step .</description><subject>Binding energy</subject><subject>Bonding</subject><subject>Chemistry</subject><subject>Desorption</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Multilayers</subject><subject>Networks</subject><subject>Physical chemistry</subject><subject>Stepped</subject><subject>Surface physical chemistry</subject><subject>Terraces</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90ctP3DAQB2ALFfFqL723MocKqJTi8dhJfITlKVHtHuAc-SkWZTfBTg7739dll-XGaUaeT6PRz4R8B_YHGKpzy2zPAEpudsgBiBILxWrxZdtX5T45TOmFMQYScI_scwAumRIH5O8FdX7Q89Y7-ji7omkY3Yp2gd7xKdVLR_voC-1SF00WU9ot6fDsM_N9nx9mw6mUeEbTGIO2_ivZDbpN_tumHpGnm-vHyV3xML29n1w8FBZVNRSVg4AsiDrkwiteAdcGUXBrg0WBMlRa6HwhCmNAW2tM5ZSwRioF6BCPyMl6bx-719GnoVnMk_Vtq5e-G1NTowRQNcgsTz-VUFYgmBRKZfp7TW3sUoo-NH2cL3RcNcCa_0E3EzaZvQV9mfHPzd7RLLzb0vdkM_i1ATpZ3Yaol3aePhzWnJe8zu547WKy2-nHjza9C9n8-MzgPyLrlpo</recordid><startdate>20110128</startdate><enddate>20110128</enddate><creator>van der Niet, Maria J. T. C</creator><creator>den Dunnen, Angela</creator><creator>Juurlink, Ludo B. F</creator><creator>Koper, Marc T. M</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110128</creationdate><title>A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface</title><author>van der Niet, Maria J. T. C ; den Dunnen, Angela ; Juurlink, Ludo B. F ; Koper, Marc T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-7d1f30f48ff30272712ab3342ccfc3435f7a4a25034bb1accbb7d94cb59913d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Binding energy</topic><topic>Bonding</topic><topic>Chemistry</topic><topic>Desorption</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Multilayers</topic><topic>Networks</topic><topic>Physical chemistry</topic><topic>Stepped</topic><topic>Surface physical chemistry</topic><topic>Terraces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Niet, Maria J. T. C</creatorcontrib><creatorcontrib>den Dunnen, Angela</creatorcontrib><creatorcontrib>Juurlink, Ludo B. F</creatorcontrib><creatorcontrib>Koper, Marc T. M</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Niet, Maria J. T. C</au><au>den Dunnen, Angela</au><au>Juurlink, Ludo B. F</au><au>Koper, Marc T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-01-28</date><risdate>2011</risdate><volume>13</volume><issue>4</issue><spage>1629</spage><epage>1638</epage><pages>1629-1638</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O ad we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O ad , OH terrace formation is favored over OH step formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H 2 O. This is a gradual process: with increasing O less OH step is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O step as the most stable water dissociation product on the step. Upon co-adsorption of O ad and H 2 O on Pt(553), the amount of OH terrace increases with increasing O at the expense of OH step .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21125094</pmid><doi>10.1039/c0cp01162b</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2011-01, Vol.13 (4), p.1629-1638
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_21125094
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Binding energy
Bonding
Chemistry
Desorption
Exact sciences and technology
General and physical chemistry
Multilayers
Networks
Physical chemistry
Stepped
Surface physical chemistry
Terraces
title A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20detailed%20TPD%20study%20of%20H2O%20and%20pre-adsorbed%20O%20on%20the%20stepped%20Pt(553)%20surface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=van%20der%20Niet,%20Maria%20J.%20T.%20C&rft.date=2011-01-28&rft.volume=13&rft.issue=4&rft.spage=1629&rft.epage=1638&rft.pages=1629-1638&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp01162b&rft_dat=%3Cproquest_pubme%3E1671405499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671405499&rft_id=info:pmid/21125094&rfr_iscdi=true