LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions

Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2011-06, Vol.41 (3), p.713-724
Hauptverfasser: Narimani, M, Lam, H K, Dilmaghani, R, Wolfe, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 3
container_start_page 713
container_title IEEE transactions on cybernetics
container_volume 41
creator Narimani, M
Lam, H K
Dilmaghani, R
Wolfe, C
description Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
doi_str_mv 10.1109/TSMCB.2010.2086443
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_21095873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5638629</ieee_id><sourcerecordid>868027870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMo3l9AQYobV9Xc2ibLcfAGMyjMuC5p5lQjaTM2KVif3owzunDjKgn5_p_D-RA6IfiSECyv5rPp-PqS4vimWOScsy20TyQnKeaSbsc7FizlnMg9dOD9G8ZYYlnsoj0a45ko2D4Kk-lDeq08LJJZUJWxJgzJqFV28MYnrk5u-8_PIZ26BdgNN3Zt6JxNZoMP0Pjk2Zv2JRktl537MI0KEXlydmhdY5RNptBU0PlXs4xVrQ7Gtf4I7dTKejjenIdofnszH9-nk8e7h_FokmomSEipLHCd1UWmoZZaKs5VlVEBQKWsKwFSkFznbKGyiksgGYVcV1pwwWpFiGCH6GJdGyd778GHsjFeg7WqBdf7UgjJWU549j-ZC0wLUeBInv8h31zfxX2toIJHjvEI0TWkO-d9B3W57OJmuqEkuFypK7_VlSt15UZdDJ1tmvuqgcVv5MdVBE7XgAGA3-8sZyKnkn0Bmd-d-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867468034</pqid></control><display><type>article</type><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</creator><creatorcontrib>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</creatorcontrib><description>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2010.2086443</identifier><identifier>PMID: 21095873</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation methods ; Artificial Intelligence ; Computer Simulation ; Control systems ; Cybernetics ; Derivatives ; Feedback ; Fuzzy control ; Fuzzy Logic ; Fuzzy systems ; linear matrix inequality (LMI) ; Lyapunov functions ; Mathematical models ; membership-function-shape-dependent stability conditions ; Models, Statistical ; Numerical Analysis, Computer-Assisted ; Numerical stability ; Polynomials ; Shape ; Stability ; Stability analysis ; Studies ; Takagi-Sugeno (T-S) fuzzy model</subject><ispartof>IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.713-724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</citedby><cites>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5638629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5638629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21095873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narimani, M</creatorcontrib><creatorcontrib>Lam, H K</creatorcontrib><creatorcontrib>Dilmaghani, R</creatorcontrib><creatorcontrib>Wolfe, C</creatorcontrib><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Control systems</subject><subject>Cybernetics</subject><subject>Derivatives</subject><subject>Feedback</subject><subject>Fuzzy control</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>linear matrix inequality (LMI)</subject><subject>Lyapunov functions</subject><subject>Mathematical models</subject><subject>membership-function-shape-dependent stability conditions</subject><subject>Models, Statistical</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Takagi-Sugeno (T-S) fuzzy model</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctKxDAUhoMo3l9AQYobV9Xc2ibLcfAGMyjMuC5p5lQjaTM2KVif3owzunDjKgn5_p_D-RA6IfiSECyv5rPp-PqS4vimWOScsy20TyQnKeaSbsc7FizlnMg9dOD9G8ZYYlnsoj0a45ko2D4Kk-lDeq08LJJZUJWxJgzJqFV28MYnrk5u-8_PIZ26BdgNN3Zt6JxNZoMP0Pjk2Zv2JRktl537MI0KEXlydmhdY5RNptBU0PlXs4xVrQ7Gtf4I7dTKejjenIdofnszH9-nk8e7h_FokmomSEipLHCd1UWmoZZaKs5VlVEBQKWsKwFSkFznbKGyiksgGYVcV1pwwWpFiGCH6GJdGyd778GHsjFeg7WqBdf7UgjJWU549j-ZC0wLUeBInv8h31zfxX2toIJHjvEI0TWkO-d9B3W57OJmuqEkuFypK7_VlSt15UZdDJ1tmvuqgcVv5MdVBE7XgAGA3-8sZyKnkn0Bmd-d-w</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Narimani, M</creator><creator>Lam, H K</creator><creator>Dilmaghani, R</creator><creator>Wolfe, C</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><author>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Control systems</topic><topic>Cybernetics</topic><topic>Derivatives</topic><topic>Feedback</topic><topic>Fuzzy control</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>linear matrix inequality (LMI)</topic><topic>Lyapunov functions</topic><topic>Mathematical models</topic><topic>membership-function-shape-dependent stability conditions</topic><topic>Models, Statistical</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Takagi-Sugeno (T-S) fuzzy model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narimani, M</creatorcontrib><creatorcontrib>Lam, H K</creatorcontrib><creatorcontrib>Dilmaghani, R</creatorcontrib><creatorcontrib>Wolfe, C</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narimani, M</au><au>Lam, H K</au><au>Dilmaghani, R</au><au>Wolfe, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2011-06</date><risdate>2011</risdate><volume>41</volume><issue>3</issue><spage>713</spage><epage>724</epage><pages>713-724</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21095873</pmid><doi>10.1109/TSMCB.2010.2086443</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.713-724
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_pubmed_primary_21095873
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Approximation methods
Artificial Intelligence
Computer Simulation
Control systems
Cybernetics
Derivatives
Feedback
Fuzzy control
Fuzzy Logic
Fuzzy systems
linear matrix inequality (LMI)
Lyapunov functions
Mathematical models
membership-function-shape-dependent stability conditions
Models, Statistical
Numerical Analysis, Computer-Assisted
Numerical stability
Polynomials
Shape
Stability
Stability analysis
Studies
Takagi-Sugeno (T-S) fuzzy model
title LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI-Based%20Stability%20Analysis%20of%20Fuzzy-Model-Based%20Control%20Systems%20Using%20Approximated%20Polynomial%20Membership%20Functions&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Narimani,%20M&rft.date=2011-06&rft.volume=41&rft.issue=3&rft.spage=713&rft.epage=724&rft.pages=713-724&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2010.2086443&rft_dat=%3Cproquest_RIE%3E868027870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867468034&rft_id=info:pmid/21095873&rft_ieee_id=5638629&rfr_iscdi=true