LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2011-06, Vol.41 (3), p.713-724 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 3 |
container_start_page | 713 |
container_title | IEEE transactions on cybernetics |
container_volume | 41 |
creator | Narimani, M Lam, H K Dilmaghani, R Wolfe, C |
description | Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach. |
doi_str_mv | 10.1109/TSMCB.2010.2086443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_21095873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5638629</ieee_id><sourcerecordid>868027870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMo3l9AQYobV9Xc2ibLcfAGMyjMuC5p5lQjaTM2KVif3owzunDjKgn5_p_D-RA6IfiSECyv5rPp-PqS4vimWOScsy20TyQnKeaSbsc7FizlnMg9dOD9G8ZYYlnsoj0a45ko2D4Kk-lDeq08LJJZUJWxJgzJqFV28MYnrk5u-8_PIZ26BdgNN3Zt6JxNZoMP0Pjk2Zv2JRktl537MI0KEXlydmhdY5RNptBU0PlXs4xVrQ7Gtf4I7dTKejjenIdofnszH9-nk8e7h_FokmomSEipLHCd1UWmoZZaKs5VlVEBQKWsKwFSkFznbKGyiksgGYVcV1pwwWpFiGCH6GJdGyd778GHsjFeg7WqBdf7UgjJWU549j-ZC0wLUeBInv8h31zfxX2toIJHjvEI0TWkO-d9B3W57OJmuqEkuFypK7_VlSt15UZdDJ1tmvuqgcVv5MdVBE7XgAGA3-8sZyKnkn0Bmd-d-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867468034</pqid></control><display><type>article</type><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</creator><creatorcontrib>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</creatorcontrib><description>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2010.2086443</identifier><identifier>PMID: 21095873</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation methods ; Artificial Intelligence ; Computer Simulation ; Control systems ; Cybernetics ; Derivatives ; Feedback ; Fuzzy control ; Fuzzy Logic ; Fuzzy systems ; linear matrix inequality (LMI) ; Lyapunov functions ; Mathematical models ; membership-function-shape-dependent stability conditions ; Models, Statistical ; Numerical Analysis, Computer-Assisted ; Numerical stability ; Polynomials ; Shape ; Stability ; Stability analysis ; Studies ; Takagi-Sugeno (T-S) fuzzy model</subject><ispartof>IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.713-724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</citedby><cites>FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5638629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5638629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21095873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narimani, M</creatorcontrib><creatorcontrib>Lam, H K</creatorcontrib><creatorcontrib>Dilmaghani, R</creatorcontrib><creatorcontrib>Wolfe, C</creatorcontrib><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Control systems</subject><subject>Cybernetics</subject><subject>Derivatives</subject><subject>Feedback</subject><subject>Fuzzy control</subject><subject>Fuzzy Logic</subject><subject>Fuzzy systems</subject><subject>linear matrix inequality (LMI)</subject><subject>Lyapunov functions</subject><subject>Mathematical models</subject><subject>membership-function-shape-dependent stability conditions</subject><subject>Models, Statistical</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Takagi-Sugeno (T-S) fuzzy model</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctKxDAUhoMo3l9AQYobV9Xc2ibLcfAGMyjMuC5p5lQjaTM2KVif3owzunDjKgn5_p_D-RA6IfiSECyv5rPp-PqS4vimWOScsy20TyQnKeaSbsc7FizlnMg9dOD9G8ZYYlnsoj0a45ko2D4Kk-lDeq08LJJZUJWxJgzJqFV28MYnrk5u-8_PIZ26BdgNN3Zt6JxNZoMP0Pjk2Zv2JRktl537MI0KEXlydmhdY5RNptBU0PlXs4xVrQ7Gtf4I7dTKejjenIdofnszH9-nk8e7h_FokmomSEipLHCd1UWmoZZaKs5VlVEBQKWsKwFSkFznbKGyiksgGYVcV1pwwWpFiGCH6GJdGyd778GHsjFeg7WqBdf7UgjJWU549j-ZC0wLUeBInv8h31zfxX2toIJHjvEI0TWkO-d9B3W57OJmuqEkuFypK7_VlSt15UZdDJ1tmvuqgcVv5MdVBE7XgAGA3-8sZyKnkn0Bmd-d-w</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Narimani, M</creator><creator>Lam, H K</creator><creator>Dilmaghani, R</creator><creator>Wolfe, C</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</title><author>Narimani, M ; Lam, H K ; Dilmaghani, R ; Wolfe, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-2970f5f75cef9c9a44ab528ee299fb8e9816c63da5b49e152e6cbc8483fa1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Control systems</topic><topic>Cybernetics</topic><topic>Derivatives</topic><topic>Feedback</topic><topic>Fuzzy control</topic><topic>Fuzzy Logic</topic><topic>Fuzzy systems</topic><topic>linear matrix inequality (LMI)</topic><topic>Lyapunov functions</topic><topic>Mathematical models</topic><topic>membership-function-shape-dependent stability conditions</topic><topic>Models, Statistical</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Takagi-Sugeno (T-S) fuzzy model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narimani, M</creatorcontrib><creatorcontrib>Lam, H K</creatorcontrib><creatorcontrib>Dilmaghani, R</creatorcontrib><creatorcontrib>Wolfe, C</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narimani, M</au><au>Lam, H K</au><au>Dilmaghani, R</au><au>Wolfe, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2011-06</date><risdate>2011</risdate><volume>41</volume><issue>3</issue><spage>713</spage><epage>724</epage><pages>713-724</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S -procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21095873</pmid><doi>10.1109/TSMCB.2010.2086443</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.713-724 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_pubmed_primary_21095873 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Approximation methods Artificial Intelligence Computer Simulation Control systems Cybernetics Derivatives Feedback Fuzzy control Fuzzy Logic Fuzzy systems linear matrix inequality (LMI) Lyapunov functions Mathematical models membership-function-shape-dependent stability conditions Models, Statistical Numerical Analysis, Computer-Assisted Numerical stability Polynomials Shape Stability Stability analysis Studies Takagi-Sugeno (T-S) fuzzy model |
title | LMI-Based Stability Analysis of Fuzzy-Model-Based Control Systems Using Approximated Polynomial Membership Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI-Based%20Stability%20Analysis%20of%20Fuzzy-Model-Based%20Control%20Systems%20Using%20Approximated%20Polynomial%20Membership%20Functions&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Narimani,%20M&rft.date=2011-06&rft.volume=41&rft.issue=3&rft.spage=713&rft.epage=724&rft.pages=713-724&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2010.2086443&rft_dat=%3Cproquest_RIE%3E868027870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867468034&rft_id=info:pmid/21095873&rft_ieee_id=5638629&rfr_iscdi=true |