Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere
In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2010-07, Vol.76 (14), p.4780-4787 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4787 |
---|---|
container_issue | 14 |
container_start_page | 4780 |
container_title | Applied and Environmental Microbiology |
container_volume | 76 |
creator | Calvaruso, Christophe Turpault, Marie-Pierre Leclerc, Elisabeth Ranger, Jacques Garbaye, Jean Uroz, Stéphane Frey-Klett, Pascale |
description | In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials. |
doi_str_mv | 10.1128/AEM.03040-09 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20511429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745716830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-2e867613d083f6f0b8d7d57b74ed55142e24188c546269ee0481f7542c83dabb3</originalsourceid><addsrcrecordid>eNqFksFu1DAQQCMEoqVw4wwREkJIpIwdx3EuSMvS0kq74tBWHC3HmWxcJfbWTorKX_DHeLtLC71wsjTz_DwzniR5SeCQECo-zo6Wh5ADgwyqR8k-gUpkRZ7zx8k-QFVllDLYS56FcAkQKS6eJnsUCkIYrfaTX6e27Se0GlPXpsfOYxjTc48YUmfTscP0iwmjN_U0mhiIzNJY9KpPv6OKaW_sKpuF4LRRIzbpZ6XHGIz5uRuGyZrRbFTtrepM9-hdg35QqTbRaqchXd5o531nfrqwjj58njxpVR_wxe48SC6Oj87nJ9ni29fT-WyRaQ4wZhQFLznJGxB5y1uoRVM2RVmXDJuiiM0hZUQIXTBOeYUITJC2LBjVIm9UXecHyaetdz3VAzYa7RjbkmtvBuVvpFNG_puxppMrdy1pBaSkJArebwXdg2sns4XcxIByLjgprjfsu91j3l1NccZyMEFj3yuLbgqyZEVJuMjh_2T8WlaWYkO-eUBeusnbODPJocrLirIqQh-2kPYuBI_tXaUE5GZ_ZNwfebs_Ejb4q7-Hcgf_WZgIvN0BKmjVt15ZbcI9lwOpCsjvi-vMqvthPEoVBqlwkCWXhEm27eD1FmqVk2rlo-jijAKJEsEZ5zz_DZSS4s8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>609379249</pqid></control><display><type>article</type><title>Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>NCBI_PubMed Central(免费)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Calvaruso, Christophe ; Turpault, Marie-Pierre ; Leclerc, Elisabeth ; Ranger, Jacques ; Garbaye, Jean ; Uroz, Stéphane ; Frey-Klett, Pascale</creator><creatorcontrib>Calvaruso, Christophe ; Turpault, Marie-Pierre ; Leclerc, Elisabeth ; Ranger, Jacques ; Garbaye, Jean ; Uroz, Stéphane ; Frey-Klett, Pascale</creatorcontrib><description>In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.03040-09</identifier><identifier>PMID: 20511429</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Aluminum Silicates - metabolism ; Bacteria ; Bacteria - classification ; Bacteria - growth & development ; Bacteria - isolation & purification ; Basidiomycota - growth & development ; Biodiversity ; Biogeochemistry ; Biological and medical sciences ; Development ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Ecology, environment ; Fagus - microbiology ; Ferrous Compounds - metabolism ; Forest soils ; Forests ; Fundamental and applied biological sciences. Psychology ; Fungi ; Geomicrobiology ; Hydrogen-Ion Concentration ; Iron - metabolism ; Life Sciences ; Microbiology ; Minerals - metabolism ; Molecular Sequence Data ; Mycorrhizae - growth & development ; Norway ; Picea - microbiology ; Plant growth ; Plant Roots - microbiology ; Quercus - microbiology ; RNA, Ribosomal, 16S - genetics ; Sequence Analysis, DNA ; Soil - analysis ; Soil Microbiology ; Sustainable development ; Trees ; Trees - microbiology</subject><ispartof>Applied and Environmental Microbiology, 2010-07, Vol.76 (14), p.4780-4787</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2010, American Society for Microbiology 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-2e867613d083f6f0b8d7d57b74ed55142e24188c546269ee0481f7542c83dabb3</citedby><cites>FETCH-LOGICAL-c600t-2e867613d083f6f0b8d7d57b74ed55142e24188c546269ee0481f7542c83dabb3</cites><orcidid>0000-0001-9412-7210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901721/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901721/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,3189,3190,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23019503$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20511429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02668615$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvaruso, Christophe</creatorcontrib><creatorcontrib>Turpault, Marie-Pierre</creatorcontrib><creatorcontrib>Leclerc, Elisabeth</creatorcontrib><creatorcontrib>Ranger, Jacques</creatorcontrib><creatorcontrib>Garbaye, Jean</creatorcontrib><creatorcontrib>Uroz, Stéphane</creatorcontrib><creatorcontrib>Frey-Klett, Pascale</creatorcontrib><title>Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.</description><subject>Aluminum Silicates - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - growth & development</subject><subject>Bacteria - isolation & purification</subject><subject>Basidiomycota - growth & development</subject><subject>Biodiversity</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Development</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Ecology, environment</subject><subject>Fagus - microbiology</subject><subject>Ferrous Compounds - metabolism</subject><subject>Forest soils</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Geomicrobiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Minerals - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mycorrhizae - growth & development</subject><subject>Norway</subject><subject>Picea - microbiology</subject><subject>Plant growth</subject><subject>Plant Roots - microbiology</subject><subject>Quercus - microbiology</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Soil - analysis</subject><subject>Soil Microbiology</subject><subject>Sustainable development</subject><subject>Trees</subject><subject>Trees - microbiology</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQQCMEoqVw4wwREkJIpIwdx3EuSMvS0kq74tBWHC3HmWxcJfbWTorKX_DHeLtLC71wsjTz_DwzniR5SeCQECo-zo6Wh5ADgwyqR8k-gUpkRZ7zx8k-QFVllDLYS56FcAkQKS6eJnsUCkIYrfaTX6e27Se0GlPXpsfOYxjTc48YUmfTscP0iwmjN_U0mhiIzNJY9KpPv6OKaW_sKpuF4LRRIzbpZ6XHGIz5uRuGyZrRbFTtrepM9-hdg35QqTbRaqchXd5o531nfrqwjj58njxpVR_wxe48SC6Oj87nJ9ni29fT-WyRaQ4wZhQFLznJGxB5y1uoRVM2RVmXDJuiiM0hZUQIXTBOeYUITJC2LBjVIm9UXecHyaetdz3VAzYa7RjbkmtvBuVvpFNG_puxppMrdy1pBaSkJArebwXdg2sns4XcxIByLjgprjfsu91j3l1NccZyMEFj3yuLbgqyZEVJuMjh_2T8WlaWYkO-eUBeusnbODPJocrLirIqQh-2kPYuBI_tXaUE5GZ_ZNwfebs_Ejb4q7-Hcgf_WZgIvN0BKmjVt15ZbcI9lwOpCsjvi-vMqvthPEoVBqlwkCWXhEm27eD1FmqVk2rlo-jijAKJEsEZ5zz_DZSS4s8</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Calvaruso, Christophe</creator><creator>Turpault, Marie-Pierre</creator><creator>Leclerc, Elisabeth</creator><creator>Ranger, Jacques</creator><creator>Garbaye, Jean</creator><creator>Uroz, Stéphane</creator><creator>Frey-Klett, Pascale</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9412-7210</orcidid></search><sort><creationdate>20100701</creationdate><title>Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere</title><author>Calvaruso, Christophe ; Turpault, Marie-Pierre ; Leclerc, Elisabeth ; Ranger, Jacques ; Garbaye, Jean ; Uroz, Stéphane ; Frey-Klett, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-2e867613d083f6f0b8d7d57b74ed55142e24188c546269ee0481f7542c83dabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum Silicates - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - growth & development</topic><topic>Bacteria - isolation & purification</topic><topic>Basidiomycota - growth & development</topic><topic>Biodiversity</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Development</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Ecology, environment</topic><topic>Fagus - microbiology</topic><topic>Ferrous Compounds - metabolism</topic><topic>Forest soils</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Geomicrobiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Minerals - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mycorrhizae - growth & development</topic><topic>Norway</topic><topic>Picea - microbiology</topic><topic>Plant growth</topic><topic>Plant Roots - microbiology</topic><topic>Quercus - microbiology</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Soil - analysis</topic><topic>Soil Microbiology</topic><topic>Sustainable development</topic><topic>Trees</topic><topic>Trees - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvaruso, Christophe</creatorcontrib><creatorcontrib>Turpault, Marie-Pierre</creatorcontrib><creatorcontrib>Leclerc, Elisabeth</creatorcontrib><creatorcontrib>Ranger, Jacques</creatorcontrib><creatorcontrib>Garbaye, Jean</creatorcontrib><creatorcontrib>Uroz, Stéphane</creatorcontrib><creatorcontrib>Frey-Klett, Pascale</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvaruso, Christophe</au><au>Turpault, Marie-Pierre</au><au>Leclerc, Elisabeth</au><au>Ranger, Jacques</au><au>Garbaye, Jean</au><au>Uroz, Stéphane</au><au>Frey-Klett, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>76</volume><issue>14</issue><spage>4780</spage><epage>4787</epage><pages>4780-4787</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>20511429</pmid><doi>10.1128/AEM.03040-09</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9412-7210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2010-07, Vol.76 (14), p.4780-4787 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_pubmed_primary_20511429 |
source | MEDLINE; American Society for Microbiology Journals; NCBI_PubMed Central(免费); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Aluminum Silicates - metabolism Bacteria Bacteria - classification Bacteria - growth & development Bacteria - isolation & purification Basidiomycota - growth & development Biodiversity Biogeochemistry Biological and medical sciences Development DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Ribosomal - chemistry DNA, Ribosomal - genetics Ecology, environment Fagus - microbiology Ferrous Compounds - metabolism Forest soils Forests Fundamental and applied biological sciences. Psychology Fungi Geomicrobiology Hydrogen-Ion Concentration Iron - metabolism Life Sciences Microbiology Minerals - metabolism Molecular Sequence Data Mycorrhizae - growth & development Norway Picea - microbiology Plant growth Plant Roots - microbiology Quercus - microbiology RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Soil - analysis Soil Microbiology Sustainable development Trees Trees - microbiology |
title | Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the Scleroderma citrinum Mycorrhizosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Forest%20Trees%20on%20the%20Distribution%20of%20Mineral%20Weathering-Associated%20Bacterial%20Communities%20of%20the%20Scleroderma%20citrinum%20Mycorrhizosphere&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Calvaruso,%20Christophe&rft.date=2010-07-01&rft.volume=76&rft.issue=14&rft.spage=4780&rft.epage=4787&rft.pages=4780-4787&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.03040-09&rft_dat=%3Cproquest_pubme%3E745716830%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=609379249&rft_id=info:pmid/20511429&rfr_iscdi=true |