Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells
Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by...
Gespeichert in:
Veröffentlicht in: | Arthritis research & therapy 2010, Vol.12 (3), p.R87 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | R87 |
container_title | Arthritis research & therapy |
container_volume | 12 |
creator | Miyamoto, Rie Ito, Tomoki Nomura, Shosaku Amakawa, Ryuichi Amuro, Hideki Katashiba, Yuichi Ogata, Makoto Murakami, Naoko Shimamoto, Keiko Yamazaki, Chihiro Hoshino, Katsuaki Kaisho, Tsuneyasu Fukuhara, Shirou |
description | Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IkappaB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.
We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-alpha production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-alpha production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.
Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-alpha production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-alpha production, more strongly inhibited IFN-alpha production than TNF-alpha production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-alpha production by human PBMCs induced by the SLE serum and the in vivo serum IFN-alpha level induced by injecting mice with poly U.
These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE. |
doi_str_mv | 10.1186/ar3014 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_20470398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20470398</sourcerecordid><originalsourceid>FETCH-LOGICAL-p558-a389db36122ff0ebc81bbce274a5ec9eb2cae06127d637516eaf76103781cfb43</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0kREuBT0D3AxrwI4nTZVvxiFSJTTesqmvnhpqmSeQ4oPwZn0fES6xGo5k5i2HsSvAbIbL0Fr3iIj5hUxHrLEpVKifsvOteOZdyIeMzNpE81lwtsin7yOu9My40HpoS8gO2La7g4GrsCNAG9-bCMIfV8hmEiDTP5BxcHciX5KmDdxf2f76pwdNLX-FIG6Ac1yNVQ93bitBD8Fh3VWMxuLGJdQFhaAny__vWN0VvvwpmgLbC7oh2CI0roKC68C44C5aqqrtgpyVWHV3-6Ixt7--268do8_SQr5ebqE2SLEKVLQqjUiFlWXIyNhPGWJI6xoTsgoy0SHyMdZEqnYiUsNSp4EpnwpYmVjN2_Y1te3OkYtd6d0Q_7H4fVJ9k23Nr</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Miyamoto, Rie ; Ito, Tomoki ; Nomura, Shosaku ; Amakawa, Ryuichi ; Amuro, Hideki ; Katashiba, Yuichi ; Ogata, Makoto ; Murakami, Naoko ; Shimamoto, Keiko ; Yamazaki, Chihiro ; Hoshino, Katsuaki ; Kaisho, Tsuneyasu ; Fukuhara, Shirou</creator><creatorcontrib>Miyamoto, Rie ; Ito, Tomoki ; Nomura, Shosaku ; Amakawa, Ryuichi ; Amuro, Hideki ; Katashiba, Yuichi ; Ogata, Makoto ; Murakami, Naoko ; Shimamoto, Keiko ; Yamazaki, Chihiro ; Hoshino, Katsuaki ; Kaisho, Tsuneyasu ; Fukuhara, Shirou</creatorcontrib><description>Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IkappaB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.
We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-alpha production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-alpha production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.
Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-alpha production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-alpha production, more strongly inhibited IFN-alpha production than TNF-alpha production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-alpha production by human PBMCs induced by the SLE serum and the in vivo serum IFN-alpha level induced by injecting mice with poly U.
These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.</description><identifier>EISSN: 1478-6362</identifier><identifier>DOI: 10.1186/ar3014</identifier><identifier>PMID: 20470398</identifier><language>eng</language><publisher>England</publisher><subject>Adult ; Animals ; Biological Transport - drug effects ; Cell Nucleus - metabolism ; Cells, Cultured ; Dendritic Cells - cytology ; Dendritic Cells - drug effects ; Dendritic Cells - metabolism ; Dose-Response Relationship, Drug ; Humans ; I-kappa B Kinase - antagonists & inhibitors ; I-kappa B Kinase - metabolism ; Interferon Regulatory Factor-7 - metabolism ; Interferon Type I - metabolism ; Interferon-alpha - metabolism ; Leukocytes, Mononuclear - cytology ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - metabolism ; Lupus Erythematosus, Systemic - metabolism ; Lupus Erythematosus, Systemic - pathology ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Nitriles - pharmacology ; Sulfones - pharmacology</subject><ispartof>Arthritis research & therapy, 2010, Vol.12 (3), p.R87</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20470398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyamoto, Rie</creatorcontrib><creatorcontrib>Ito, Tomoki</creatorcontrib><creatorcontrib>Nomura, Shosaku</creatorcontrib><creatorcontrib>Amakawa, Ryuichi</creatorcontrib><creatorcontrib>Amuro, Hideki</creatorcontrib><creatorcontrib>Katashiba, Yuichi</creatorcontrib><creatorcontrib>Ogata, Makoto</creatorcontrib><creatorcontrib>Murakami, Naoko</creatorcontrib><creatorcontrib>Shimamoto, Keiko</creatorcontrib><creatorcontrib>Yamazaki, Chihiro</creatorcontrib><creatorcontrib>Hoshino, Katsuaki</creatorcontrib><creatorcontrib>Kaisho, Tsuneyasu</creatorcontrib><creatorcontrib>Fukuhara, Shirou</creatorcontrib><title>Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells</title><title>Arthritis research & therapy</title><addtitle>Arthritis Res Ther</addtitle><description>Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IkappaB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.
We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-alpha production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-alpha production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.
Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-alpha production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-alpha production, more strongly inhibited IFN-alpha production than TNF-alpha production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-alpha production by human PBMCs induced by the SLE serum and the in vivo serum IFN-alpha level induced by injecting mice with poly U.
These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.</description><subject>Adult</subject><subject>Animals</subject><subject>Biological Transport - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells, Cultured</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Humans</subject><subject>I-kappa B Kinase - antagonists & inhibitors</subject><subject>I-kappa B Kinase - metabolism</subject><subject>Interferon Regulatory Factor-7 - metabolism</subject><subject>Interferon Type I - metabolism</subject><subject>Interferon-alpha - metabolism</subject><subject>Leukocytes, Mononuclear - cytology</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Lupus Erythematosus, Systemic - metabolism</subject><subject>Lupus Erythematosus, Systemic - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Nitriles - pharmacology</subject><subject>Sulfones - pharmacology</subject><issn>1478-6362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAURC0kREuBT0D3AxrwI4nTZVvxiFSJTTesqmvnhpqmSeQ4oPwZn0fES6xGo5k5i2HsSvAbIbL0Fr3iIj5hUxHrLEpVKifsvOteOZdyIeMzNpE81lwtsin7yOu9My40HpoS8gO2La7g4GrsCNAG9-bCMIfV8hmEiDTP5BxcHciX5KmDdxf2f76pwdNLX-FIG6Ac1yNVQ93bitBD8Fh3VWMxuLGJdQFhaAny__vWN0VvvwpmgLbC7oh2CI0roKC68C44C5aqqrtgpyVWHV3-6Ixt7--268do8_SQr5ebqE2SLEKVLQqjUiFlWXIyNhPGWJI6xoTsgoy0SHyMdZEqnYiUsNSp4EpnwpYmVjN2_Y1te3OkYtd6d0Q_7H4fVJ9k23Nr</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Miyamoto, Rie</creator><creator>Ito, Tomoki</creator><creator>Nomura, Shosaku</creator><creator>Amakawa, Ryuichi</creator><creator>Amuro, Hideki</creator><creator>Katashiba, Yuichi</creator><creator>Ogata, Makoto</creator><creator>Murakami, Naoko</creator><creator>Shimamoto, Keiko</creator><creator>Yamazaki, Chihiro</creator><creator>Hoshino, Katsuaki</creator><creator>Kaisho, Tsuneyasu</creator><creator>Fukuhara, Shirou</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>2010</creationdate><title>Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells</title><author>Miyamoto, Rie ; Ito, Tomoki ; Nomura, Shosaku ; Amakawa, Ryuichi ; Amuro, Hideki ; Katashiba, Yuichi ; Ogata, Makoto ; Murakami, Naoko ; Shimamoto, Keiko ; Yamazaki, Chihiro ; Hoshino, Katsuaki ; Kaisho, Tsuneyasu ; Fukuhara, Shirou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p558-a389db36122ff0ebc81bbce274a5ec9eb2cae06127d637516eaf76103781cfb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Biological Transport - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells, Cultured</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Humans</topic><topic>I-kappa B Kinase - antagonists & inhibitors</topic><topic>I-kappa B Kinase - metabolism</topic><topic>Interferon Regulatory Factor-7 - metabolism</topic><topic>Interferon Type I - metabolism</topic><topic>Interferon-alpha - metabolism</topic><topic>Leukocytes, Mononuclear - cytology</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Lupus Erythematosus, Systemic - metabolism</topic><topic>Lupus Erythematosus, Systemic - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Nitriles - pharmacology</topic><topic>Sulfones - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyamoto, Rie</creatorcontrib><creatorcontrib>Ito, Tomoki</creatorcontrib><creatorcontrib>Nomura, Shosaku</creatorcontrib><creatorcontrib>Amakawa, Ryuichi</creatorcontrib><creatorcontrib>Amuro, Hideki</creatorcontrib><creatorcontrib>Katashiba, Yuichi</creatorcontrib><creatorcontrib>Ogata, Makoto</creatorcontrib><creatorcontrib>Murakami, Naoko</creatorcontrib><creatorcontrib>Shimamoto, Keiko</creatorcontrib><creatorcontrib>Yamazaki, Chihiro</creatorcontrib><creatorcontrib>Hoshino, Katsuaki</creatorcontrib><creatorcontrib>Kaisho, Tsuneyasu</creatorcontrib><creatorcontrib>Fukuhara, Shirou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Arthritis research & therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyamoto, Rie</au><au>Ito, Tomoki</au><au>Nomura, Shosaku</au><au>Amakawa, Ryuichi</au><au>Amuro, Hideki</au><au>Katashiba, Yuichi</au><au>Ogata, Makoto</au><au>Murakami, Naoko</au><au>Shimamoto, Keiko</au><au>Yamazaki, Chihiro</au><au>Hoshino, Katsuaki</au><au>Kaisho, Tsuneyasu</au><au>Fukuhara, Shirou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells</atitle><jtitle>Arthritis research & therapy</jtitle><addtitle>Arthritis Res Ther</addtitle><date>2010</date><risdate>2010</risdate><volume>12</volume><issue>3</issue><spage>R87</spage><pages>R87-</pages><eissn>1478-6362</eissn><abstract>Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IkappaB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.
We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-alpha production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-alpha production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.
Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-alpha production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-alpha production, more strongly inhibited IFN-alpha production than TNF-alpha production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-alpha production by human PBMCs induced by the SLE serum and the in vivo serum IFN-alpha level induced by injecting mice with poly U.
These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.</abstract><cop>England</cop><pmid>20470398</pmid><doi>10.1186/ar3014</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1478-6362 |
ispartof | Arthritis research & therapy, 2010, Vol.12 (3), p.R87 |
issn | 1478-6362 |
language | eng |
recordid | cdi_pubmed_primary_20470398 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Adult Animals Biological Transport - drug effects Cell Nucleus - metabolism Cells, Cultured Dendritic Cells - cytology Dendritic Cells - drug effects Dendritic Cells - metabolism Dose-Response Relationship, Drug Humans I-kappa B Kinase - antagonists & inhibitors I-kappa B Kinase - metabolism Interferon Regulatory Factor-7 - metabolism Interferon Type I - metabolism Interferon-alpha - metabolism Leukocytes, Mononuclear - cytology Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - metabolism Lupus Erythematosus, Systemic - metabolism Lupus Erythematosus, Systemic - pathology Mice Mice, Inbred C57BL Models, Animal Nitriles - pharmacology Sulfones - pharmacology |
title | Inhibitor of IkappaB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitor%20of%20IkappaB%20kinase%20activity,%20BAY%2011-7082,%20interferes%20with%20interferon%20regulatory%20factor%207%20nuclear%20translocation%20and%20type%20I%20interferon%20production%20by%20plasmacytoid%20dendritic%20cells&rft.jtitle=Arthritis%20research%20&%20therapy&rft.au=Miyamoto,%20Rie&rft.date=2010&rft.volume=12&rft.issue=3&rft.spage=R87&rft.pages=R87-&rft.eissn=1478-6362&rft_id=info:doi/10.1186/ar3014&rft_dat=%3Cpubmed%3E20470398%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20470398&rfr_iscdi=true |