A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification

Perfusion imaging is a useful adjunct to anatomic imaging in numerous diagnostic and therapy-monitoring settings. One approach to perfusion imaging is to assume a convolution relationship between a local arterial input function and the tissue enhancement profile of the region of interest via a ¿resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2010-05, Vol.29 (5), p.1182-1191
Hauptverfasser: Lili He, Orten, Burkay, Synho Do, Karl, W Clem, Kambadakone, Avinish, Sahani, Dushyant V, Pien, Homer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 5
container_start_page 1182
container_title IEEE transactions on medical imaging
container_volume 29
creator Lili He
Orten, Burkay
Synho Do
Karl, W Clem
Kambadakone, Avinish
Sahani, Dushyant V
Pien, Homer
description Perfusion imaging is a useful adjunct to anatomic imaging in numerous diagnostic and therapy-monitoring settings. One approach to perfusion imaging is to assume a convolution relationship between a local arterial input function and the tissue enhancement profile of the region of interest via a ¿residue function¿ and subsequently solve for this residue function. This ill-posed problem is generally solved using singular-value decomposition based approaches, and the hemodynamic parameters are solved for each voxel independently. In this paper, we present a formulation which incorporates both spatial and temporal correlations, and show through simulations that this new formulation yields higher accuracy and greater robustness with respect to image noise. We also show using rectal cancer tumor images that this new formulation results in better segregation of normal and cancerous voxels.
doi_str_mv 10.1109/TMI.2010.2043536
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_20378468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5445032</ieee_id><sourcerecordid>2716743561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e11ea0732ca10b02dc53d59fd5db75e458c7818db3a5feb49ed24125c40e6d73</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoaDZp74FCMfSQXLwdfdnSMWyTdCFLEuJDb0aWxtTBtraWHci_j8xu99BDcxLSPPOOpIeQcwpLSkF_LzbrJYO4YyC45NkRWVApVcqk-PWBLIDlKgXI2Ak5DeEZgAoJ-iM5YcBzJTK1IJur5GlrxsanBXZbP5g2-YHW9y--neJpn2xw_O1dMvpk3W0H_4LJAw71FObaqkgeJ9OPTd3YOaP_RI5r0wb8vF_PSHFzXax-pnf3t-vV1V1qBaVjipSigZwzayhUwJyV3EldO-mqXKKQyuaKKldxI2ushEbHBGXSCsDM5fyMXOxi44X-TBjGsmuCxbY1PfoplBoYl5mG7F0y5wI46IxF8vK_JOWSMc0UzOO__YM--2no44NLGr-c5kJoFSnYUXbwIQxYl9uh6czwGqFytldGe-Vsr9zbiy1f98FT1aE7NPzVFYEvO6BBxENZiqiVM_4G2OKcJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027174498</pqid></control><display><type>article</type><title>A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification</title><source>IEEE Electronic Library (IEL)</source><creator>Lili He ; Orten, Burkay ; Synho Do ; Karl, W Clem ; Kambadakone, Avinish ; Sahani, Dushyant V ; Pien, Homer</creator><creatorcontrib>Lili He ; Orten, Burkay ; Synho Do ; Karl, W Clem ; Kambadakone, Avinish ; Sahani, Dushyant V ; Pien, Homer</creatorcontrib><description>Perfusion imaging is a useful adjunct to anatomic imaging in numerous diagnostic and therapy-monitoring settings. One approach to perfusion imaging is to assume a convolution relationship between a local arterial input function and the tissue enhancement profile of the region of interest via a ¿residue function¿ and subsequently solve for this residue function. This ill-posed problem is generally solved using singular-value decomposition based approaches, and the hemodynamic parameters are solved for each voxel independently. In this paper, we present a formulation which incorporates both spatial and temporal correlations, and show through simulations that this new formulation yields higher accuracy and greater robustness with respect to image noise. We also show using rectal cancer tumor images that this new formulation results in better segregation of normal and cancerous voxels.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2010.2043536</identifier><identifier>PMID: 20378468</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Blood Flow Velocity ; Computed tomography ; Computer Simulation ; Contrast Media ; Convolution ; Deconvolution ; Hemodynamics ; Hospitals ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Medical diagnostic imaging ; Perfusion ; perfusion computed tomography (CT) ; Radiology ; singular value decomposition ; spatial and temporal correlations ; Time Factors ; Tomography, X-Ray Computed - methods ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2010-05, Vol.29 (5), p.1182-1191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e11ea0732ca10b02dc53d59fd5db75e458c7818db3a5feb49ed24125c40e6d73</citedby><cites>FETCH-LOGICAL-c411t-e11ea0732ca10b02dc53d59fd5db75e458c7818db3a5feb49ed24125c40e6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5445032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5445032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20378468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lili He</creatorcontrib><creatorcontrib>Orten, Burkay</creatorcontrib><creatorcontrib>Synho Do</creatorcontrib><creatorcontrib>Karl, W Clem</creatorcontrib><creatorcontrib>Kambadakone, Avinish</creatorcontrib><creatorcontrib>Sahani, Dushyant V</creatorcontrib><creatorcontrib>Pien, Homer</creatorcontrib><title>A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Perfusion imaging is a useful adjunct to anatomic imaging in numerous diagnostic and therapy-monitoring settings. One approach to perfusion imaging is to assume a convolution relationship between a local arterial input function and the tissue enhancement profile of the region of interest via a ¿residue function¿ and subsequently solve for this residue function. This ill-posed problem is generally solved using singular-value decomposition based approaches, and the hemodynamic parameters are solved for each voxel independently. In this paper, we present a formulation which incorporates both spatial and temporal correlations, and show through simulations that this new formulation yields higher accuracy and greater robustness with respect to image noise. We also show using rectal cancer tumor images that this new formulation results in better segregation of normal and cancerous voxels.</description><subject>Biomedical imaging</subject><subject>Blood Flow Velocity</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Contrast Media</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Hemodynamics</subject><subject>Hospitals</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Medical diagnostic imaging</subject><subject>Perfusion</subject><subject>perfusion computed tomography (CT)</subject><subject>Radiology</subject><subject>singular value decomposition</subject><subject>spatial and temporal correlations</subject><subject>Time Factors</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVoaDZp74FCMfSQXLwdfdnSMWyTdCFLEuJDb0aWxtTBtraWHci_j8xu99BDcxLSPPOOpIeQcwpLSkF_LzbrJYO4YyC45NkRWVApVcqk-PWBLIDlKgXI2Ak5DeEZgAoJ-iM5YcBzJTK1IJur5GlrxsanBXZbP5g2-YHW9y--neJpn2xw_O1dMvpk3W0H_4LJAw71FObaqkgeJ9OPTd3YOaP_RI5r0wb8vF_PSHFzXax-pnf3t-vV1V1qBaVjipSigZwzayhUwJyV3EldO-mqXKKQyuaKKldxI2ushEbHBGXSCsDM5fyMXOxi44X-TBjGsmuCxbY1PfoplBoYl5mG7F0y5wI46IxF8vK_JOWSMc0UzOO__YM--2no44NLGr-c5kJoFSnYUXbwIQxYl9uh6czwGqFytldGe-Vsr9zbiy1f98FT1aE7NPzVFYEvO6BBxENZiqiVM_4G2OKcJQ</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Lili He</creator><creator>Orten, Burkay</creator><creator>Synho Do</creator><creator>Karl, W Clem</creator><creator>Kambadakone, Avinish</creator><creator>Sahani, Dushyant V</creator><creator>Pien, Homer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201005</creationdate><title>A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification</title><author>Lili He ; Orten, Burkay ; Synho Do ; Karl, W Clem ; Kambadakone, Avinish ; Sahani, Dushyant V ; Pien, Homer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e11ea0732ca10b02dc53d59fd5db75e458c7818db3a5feb49ed24125c40e6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical imaging</topic><topic>Blood Flow Velocity</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Contrast Media</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Hemodynamics</topic><topic>Hospitals</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Medical diagnostic imaging</topic><topic>Perfusion</topic><topic>perfusion computed tomography (CT)</topic><topic>Radiology</topic><topic>singular value decomposition</topic><topic>spatial and temporal correlations</topic><topic>Time Factors</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Lili He</creatorcontrib><creatorcontrib>Orten, Burkay</creatorcontrib><creatorcontrib>Synho Do</creatorcontrib><creatorcontrib>Karl, W Clem</creatorcontrib><creatorcontrib>Kambadakone, Avinish</creatorcontrib><creatorcontrib>Sahani, Dushyant V</creatorcontrib><creatorcontrib>Pien, Homer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lili He</au><au>Orten, Burkay</au><au>Synho Do</au><au>Karl, W Clem</au><au>Kambadakone, Avinish</au><au>Sahani, Dushyant V</au><au>Pien, Homer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2010-05</date><risdate>2010</risdate><volume>29</volume><issue>5</issue><spage>1182</spage><epage>1191</epage><pages>1182-1191</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Perfusion imaging is a useful adjunct to anatomic imaging in numerous diagnostic and therapy-monitoring settings. One approach to perfusion imaging is to assume a convolution relationship between a local arterial input function and the tissue enhancement profile of the region of interest via a ¿residue function¿ and subsequently solve for this residue function. This ill-posed problem is generally solved using singular-value decomposition based approaches, and the hemodynamic parameters are solved for each voxel independently. In this paper, we present a formulation which incorporates both spatial and temporal correlations, and show through simulations that this new formulation yields higher accuracy and greater robustness with respect to image noise. We also show using rectal cancer tumor images that this new formulation results in better segregation of normal and cancerous voxels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20378468</pmid><doi>10.1109/TMI.2010.2043536</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2010-05, Vol.29 (5), p.1182-1191
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_20378468
source IEEE Electronic Library (IEL)
subjects Biomedical imaging
Blood Flow Velocity
Computed tomography
Computer Simulation
Contrast Media
Convolution
Deconvolution
Hemodynamics
Hospitals
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Medical diagnostic imaging
Perfusion
perfusion computed tomography (CT)
Radiology
singular value decomposition
spatial and temporal correlations
Time Factors
Tomography, X-Ray Computed - methods
X-ray imaging
title A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatio-Temporal%20Deconvolution%20Method%20to%20Improve%20Perfusion%20CT%20Quantification&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Lili%20He&rft.date=2010-05&rft.volume=29&rft.issue=5&rft.spage=1182&rft.epage=1191&rft.pages=1182-1191&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2010.2043536&rft_dat=%3Cproquest_RIE%3E2716743561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027174498&rft_id=info:pmid/20378468&rft_ieee_id=5445032&rfr_iscdi=true