Enhanced synaptic connectivity and epilepsy in C1q knockout mice
Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geni...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-04, Vol.107 (17), p.7975-7980 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7980 |
---|---|
container_issue | 17 |
container_start_page | 7975 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Chu, Yunxiang Jin, Xiaoming Parada, Isabel Pesic, Alexei Stevens, Beth Barres, Ben Prince, David A. Jones, Edward G. |
description | Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development. |
doi_str_mv | 10.1073/pnas.0913449107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20375278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25665469</jstor_id><sourcerecordid>25665469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</originalsourceid><addsrcrecordid>eNqFkc1v3CAUxFHVqNlse-6prZVLT04ePAzmUjVapR9SpF7aM8IYN2y84Bg70v73YbXbbNtLuCDgN6N5DCFvKVxQkHg5BJMuQFHkXOWLF2RB86kUXMFLsgBgsqw546fkLKU1AKiqhlfklAHKisl6QT5fh1sTrGuLtA1mmLwtbAzB2ck_-GlbmNAWbvC9G9K28KFY0fviLkR7F-ep2HjrXpOTzvTJvTnsS_Lry_XP1bfy5sfX76urm9JWAqcSFTjVIjZIbStMxW2tQCEYJaExSrGuMy12wBVDsNxh18oGO8sbkaU575J82vsOc7NxrXVhGk2vh9FvzLjV0Xj970vwt_p3fNCsFlKByAYfDwZjvJ9dmvTGJ-v63gQX56Qlz0FrpqrnSUTKePbN5Pl_5DrOY8j_oBlQxArzWpLLPWTHmNLouqfQFPSuRb1rUR9bzIr3f8_6xP-pLQMfDsBOebSTmkotldzN8G5PrNMUx6NDJUTFhcJH3kCr5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201335333</pqid></control><display><type>article</type><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</creator><creatorcontrib>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</creatorcontrib><description>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0913449107</identifier><identifier>PMID: 20375278</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analysis of Variance ; Animals ; Axons ; Biochemistry ; Biological Sciences ; Brain ; Complement C1q - deficiency ; Complement C1q - genetics ; Complement C1q - metabolism ; Connectivity ; Electrodes ; Electroencephalography ; Epilepsy ; Epilepsy - physiopathology ; Evoked Potentials ; Glutamates - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Video ; Neocortex - physiopathology ; Neurons ; Patch-Clamp Techniques ; Photic Stimulation ; Proteins ; Pruning ; Pyramidal cells ; Rodents ; Seizures ; Synapses ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (17), p.7975-7980</ispartof><rights>Copyright National Academy of Sciences Apr 27, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</citedby><cites>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25665469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25665469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20375278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Yunxiang</creatorcontrib><creatorcontrib>Jin, Xiaoming</creatorcontrib><creatorcontrib>Parada, Isabel</creatorcontrib><creatorcontrib>Pesic, Alexei</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Barres, Ben</creatorcontrib><creatorcontrib>Prince, David A.</creatorcontrib><creatorcontrib>Jones, Edward G.</creatorcontrib><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Axons</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Complement C1q - deficiency</subject><subject>Complement C1q - genetics</subject><subject>Complement C1q - metabolism</subject><subject>Connectivity</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy - physiopathology</subject><subject>Evoked Potentials</subject><subject>Glutamates - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Video</subject><subject>Neocortex - physiopathology</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Proteins</subject><subject>Pruning</subject><subject>Pyramidal cells</subject><subject>Rodents</subject><subject>Seizures</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v3CAUxFHVqNlse-6prZVLT04ePAzmUjVapR9SpF7aM8IYN2y84Bg70v73YbXbbNtLuCDgN6N5DCFvKVxQkHg5BJMuQFHkXOWLF2RB86kUXMFLsgBgsqw546fkLKU1AKiqhlfklAHKisl6QT5fh1sTrGuLtA1mmLwtbAzB2ck_-GlbmNAWbvC9G9K28KFY0fviLkR7F-ep2HjrXpOTzvTJvTnsS_Lry_XP1bfy5sfX76urm9JWAqcSFTjVIjZIbStMxW2tQCEYJaExSrGuMy12wBVDsNxh18oGO8sbkaU575J82vsOc7NxrXVhGk2vh9FvzLjV0Xj970vwt_p3fNCsFlKByAYfDwZjvJ9dmvTGJ-v63gQX56Qlz0FrpqrnSUTKePbN5Pl_5DrOY8j_oBlQxArzWpLLPWTHmNLouqfQFPSuRb1rUR9bzIr3f8_6xP-pLQMfDsBOebSTmkotldzN8G5PrNMUx6NDJUTFhcJH3kCr5A</recordid><startdate>20100427</startdate><enddate>20100427</enddate><creator>Chu, Yunxiang</creator><creator>Jin, Xiaoming</creator><creator>Parada, Isabel</creator><creator>Pesic, Alexei</creator><creator>Stevens, Beth</creator><creator>Barres, Ben</creator><creator>Prince, David A.</creator><creator>Jones, Edward G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100427</creationdate><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><author>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Axons</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Complement C1q - deficiency</topic><topic>Complement C1q - genetics</topic><topic>Complement C1q - metabolism</topic><topic>Connectivity</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy - physiopathology</topic><topic>Evoked Potentials</topic><topic>Glutamates - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Video</topic><topic>Neocortex - physiopathology</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Proteins</topic><topic>Pruning</topic><topic>Pyramidal cells</topic><topic>Rodents</topic><topic>Seizures</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yunxiang</creatorcontrib><creatorcontrib>Jin, Xiaoming</creatorcontrib><creatorcontrib>Parada, Isabel</creatorcontrib><creatorcontrib>Pesic, Alexei</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Barres, Ben</creatorcontrib><creatorcontrib>Prince, David A.</creatorcontrib><creatorcontrib>Jones, Edward G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yunxiang</au><au>Jin, Xiaoming</au><au>Parada, Isabel</au><au>Pesic, Alexei</au><au>Stevens, Beth</au><au>Barres, Ben</au><au>Prince, David A.</au><au>Jones, Edward G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-04-27</date><risdate>2010</risdate><volume>107</volume><issue>17</issue><spage>7975</spage><epage>7980</epage><pages>7975-7980</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20375278</pmid><doi>10.1073/pnas.0913449107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (17), p.7975-7980 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_20375278 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analysis of Variance Animals Axons Biochemistry Biological Sciences Brain Complement C1q - deficiency Complement C1q - genetics Complement C1q - metabolism Connectivity Electrodes Electroencephalography Epilepsy Epilepsy - physiopathology Evoked Potentials Glutamates - metabolism Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Video Neocortex - physiopathology Neurons Patch-Clamp Techniques Photic Stimulation Proteins Pruning Pyramidal cells Rodents Seizures Synapses Synapses - metabolism Synapses - physiology |
title | Enhanced synaptic connectivity and epilepsy in C1q knockout mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20synaptic%20connectivity%20and%20epilepsy%20in%20C1q%20knockout%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chu,%20Yunxiang&rft.date=2010-04-27&rft.volume=107&rft.issue=17&rft.spage=7975&rft.epage=7980&rft.pages=7975-7980&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0913449107&rft_dat=%3Cjstor_pubme%3E25665469%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201335333&rft_id=info:pmid/20375278&rft_jstor_id=25665469&rfr_iscdi=true |