Enhanced synaptic connectivity and epilepsy in C1q knockout mice

Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-04, Vol.107 (17), p.7975-7980
Hauptverfasser: Chu, Yunxiang, Jin, Xiaoming, Parada, Isabel, Pesic, Alexei, Stevens, Beth, Barres, Ben, Prince, David A., Jones, Edward G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7980
container_issue 17
container_start_page 7975
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Chu, Yunxiang
Jin, Xiaoming
Parada, Isabel
Pesic, Alexei
Stevens, Beth
Barres, Ben
Prince, David A.
Jones, Edward G.
description Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.
doi_str_mv 10.1073/pnas.0913449107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20375278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25665469</jstor_id><sourcerecordid>25665469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</originalsourceid><addsrcrecordid>eNqFkc1v3CAUxFHVqNlse-6prZVLT04ePAzmUjVapR9SpF7aM8IYN2y84Bg70v73YbXbbNtLuCDgN6N5DCFvKVxQkHg5BJMuQFHkXOWLF2RB86kUXMFLsgBgsqw546fkLKU1AKiqhlfklAHKisl6QT5fh1sTrGuLtA1mmLwtbAzB2ck_-GlbmNAWbvC9G9K28KFY0fviLkR7F-ep2HjrXpOTzvTJvTnsS_Lry_XP1bfy5sfX76urm9JWAqcSFTjVIjZIbStMxW2tQCEYJaExSrGuMy12wBVDsNxh18oGO8sbkaU575J82vsOc7NxrXVhGk2vh9FvzLjV0Xj970vwt_p3fNCsFlKByAYfDwZjvJ9dmvTGJ-v63gQX56Qlz0FrpqrnSUTKePbN5Pl_5DrOY8j_oBlQxArzWpLLPWTHmNLouqfQFPSuRb1rUR9bzIr3f8_6xP-pLQMfDsBOebSTmkotldzN8G5PrNMUx6NDJUTFhcJH3kCr5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201335333</pqid></control><display><type>article</type><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</creator><creatorcontrib>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</creatorcontrib><description>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0913449107</identifier><identifier>PMID: 20375278</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analysis of Variance ; Animals ; Axons ; Biochemistry ; Biological Sciences ; Brain ; Complement C1q - deficiency ; Complement C1q - genetics ; Complement C1q - metabolism ; Connectivity ; Electrodes ; Electroencephalography ; Epilepsy ; Epilepsy - physiopathology ; Evoked Potentials ; Glutamates - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Video ; Neocortex - physiopathology ; Neurons ; Patch-Clamp Techniques ; Photic Stimulation ; Proteins ; Pruning ; Pyramidal cells ; Rodents ; Seizures ; Synapses ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (17), p.7975-7980</ispartof><rights>Copyright National Academy of Sciences Apr 27, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</citedby><cites>FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25665469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25665469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20375278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Yunxiang</creatorcontrib><creatorcontrib>Jin, Xiaoming</creatorcontrib><creatorcontrib>Parada, Isabel</creatorcontrib><creatorcontrib>Pesic, Alexei</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Barres, Ben</creatorcontrib><creatorcontrib>Prince, David A.</creatorcontrib><creatorcontrib>Jones, Edward G.</creatorcontrib><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Axons</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Complement C1q - deficiency</subject><subject>Complement C1q - genetics</subject><subject>Complement C1q - metabolism</subject><subject>Connectivity</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy - physiopathology</subject><subject>Evoked Potentials</subject><subject>Glutamates - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Video</subject><subject>Neocortex - physiopathology</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Proteins</subject><subject>Pruning</subject><subject>Pyramidal cells</subject><subject>Rodents</subject><subject>Seizures</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v3CAUxFHVqNlse-6prZVLT04ePAzmUjVapR9SpF7aM8IYN2y84Bg70v73YbXbbNtLuCDgN6N5DCFvKVxQkHg5BJMuQFHkXOWLF2RB86kUXMFLsgBgsqw546fkLKU1AKiqhlfklAHKisl6QT5fh1sTrGuLtA1mmLwtbAzB2ck_-GlbmNAWbvC9G9K28KFY0fviLkR7F-ep2HjrXpOTzvTJvTnsS_Lry_XP1bfy5sfX76urm9JWAqcSFTjVIjZIbStMxW2tQCEYJaExSrGuMy12wBVDsNxh18oGO8sbkaU575J82vsOc7NxrXVhGk2vh9FvzLjV0Xj970vwt_p3fNCsFlKByAYfDwZjvJ9dmvTGJ-v63gQX56Qlz0FrpqrnSUTKePbN5Pl_5DrOY8j_oBlQxArzWpLLPWTHmNLouqfQFPSuRb1rUR9bzIr3f8_6xP-pLQMfDsBOebSTmkotldzN8G5PrNMUx6NDJUTFhcJH3kCr5A</recordid><startdate>20100427</startdate><enddate>20100427</enddate><creator>Chu, Yunxiang</creator><creator>Jin, Xiaoming</creator><creator>Parada, Isabel</creator><creator>Pesic, Alexei</creator><creator>Stevens, Beth</creator><creator>Barres, Ben</creator><creator>Prince, David A.</creator><creator>Jones, Edward G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100427</creationdate><title>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</title><author>Chu, Yunxiang ; Jin, Xiaoming ; Parada, Isabel ; Pesic, Alexei ; Stevens, Beth ; Barres, Ben ; Prince, David A. ; Jones, Edward G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-390e9d33b31cd6a54c890930a970ba992ffad3f049230c4e3fd7b3fc4b6390203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Axons</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Complement C1q - deficiency</topic><topic>Complement C1q - genetics</topic><topic>Complement C1q - metabolism</topic><topic>Connectivity</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy - physiopathology</topic><topic>Evoked Potentials</topic><topic>Glutamates - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Video</topic><topic>Neocortex - physiopathology</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Proteins</topic><topic>Pruning</topic><topic>Pyramidal cells</topic><topic>Rodents</topic><topic>Seizures</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yunxiang</creatorcontrib><creatorcontrib>Jin, Xiaoming</creatorcontrib><creatorcontrib>Parada, Isabel</creatorcontrib><creatorcontrib>Pesic, Alexei</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Barres, Ben</creatorcontrib><creatorcontrib>Prince, David A.</creatorcontrib><creatorcontrib>Jones, Edward G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yunxiang</au><au>Jin, Xiaoming</au><au>Parada, Isabel</au><au>Pesic, Alexei</au><au>Stevens, Beth</au><au>Barres, Ben</au><au>Prince, David A.</au><au>Jones, Edward G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced synaptic connectivity and epilepsy in C1q knockout mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-04-27</date><risdate>2010</risdate><volume>107</volume><issue>17</issue><spage>7975</spage><epage>7980</epage><pages>7975-7980</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Excessive CNS synapses are eliminated during development to establish mature patterns of neuronal connectivity. A complement cascade protein, C1q, is involved in this process. Mice deficient in C1q fail to refine retinogeniculate connections resulting in excessive retinal innervation of lateral geniculate neurons. We hypothesized that C1q knockout (KO) mice would exhibit defects in neocortical synapse elimination resulting in enhanced excitatory synaptic connectivity and epileptiform activity. We recorded spontaneous and evoked field potential activity in neocortical slices and obtained video-EEG recordings from implanted C1q KO and wild-type (WT) mice. We also used laser scanning photostimulation of caged glutamate and whole cell recordings to map excitatory and inhibitory synaptic connectivity. Spontaneous and evoked epileptiform field potentials occurred at multiple sites in neocortical slices from C1q KO, but not WT mice. Laser mapping experiments in C1q KO slices showed that the proportion of glutamate uncaging sites from which excitatory post-synaptic currents (EPSCs) could be evoked ("hotspot ratio") increased significantly in layer IV and layer V, although EPSC amplitudes were unaltered. Density of axonal boutons was significantly increased in layer V pyramidal neurons of C1q KO mice. Implanted KO mice had frequent behavioral seizures consisting of behavioral arrest associated with bihemispheric spikes and slow wave activity lasting from 5 to 30 s. Results indicate that epileptogenesis in C1q KO mice is related to a genetically determined failure to prune excessive excitatory synapses during development.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20375278</pmid><doi>10.1073/pnas.0913449107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-04, Vol.107 (17), p.7975-7980
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20375278
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Analysis of Variance
Animals
Axons
Biochemistry
Biological Sciences
Brain
Complement C1q - deficiency
Complement C1q - genetics
Complement C1q - metabolism
Connectivity
Electrodes
Electroencephalography
Epilepsy
Epilepsy - physiopathology
Evoked Potentials
Glutamates - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Video
Neocortex - physiopathology
Neurons
Patch-Clamp Techniques
Photic Stimulation
Proteins
Pruning
Pyramidal cells
Rodents
Seizures
Synapses
Synapses - metabolism
Synapses - physiology
title Enhanced synaptic connectivity and epilepsy in C1q knockout mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20synaptic%20connectivity%20and%20epilepsy%20in%20C1q%20knockout%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chu,%20Yunxiang&rft.date=2010-04-27&rft.volume=107&rft.issue=17&rft.spage=7975&rft.epage=7980&rft.pages=7975-7980&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0913449107&rft_dat=%3Cjstor_pubme%3E25665469%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201335333&rft_id=info:pmid/20375278&rft_jstor_id=25665469&rfr_iscdi=true