Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure
Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (11), p.5130-5135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5135 |
---|---|
container_issue | 11 |
container_start_page | 5130 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Lee, Jongho Shmueli, Karin Fukunaga, Masaki van Gelderen, Peter Merkle, Hellmut Silva, Afonso C Duyn, Jeff H |
description | Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure. |
doi_str_mv | 10.1073/pnas.0910222107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20202922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664938</jstor_id><sourcerecordid>25664938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EomnhzAlY9cJp2xl7_XVBQhUflYqQKJW4Wc7G2zpK7NT2Vsq_x6uEBjghH-yxn3k1M68JeYVwhiDZ-SbYfAYagVJaL56QGdaoFZ2Gp2QGQGWrOtodkeOclwCguYLn5IhCXZrSGfl57UL2xT_4sm3i0Hz9ftkkl2OwoXfNkNz96EK_bUpsyp1rYvIuFFt8DBM9T9aHpvicR9esfZ9iLmnsy5jcC_JssKvsXu73E3Lz6eOPiy_t1bfPlxcfrtqeK1nauaOSo7QdON0vKEfaiwHr0YnOoZLaIldz7RYLbhXgoJmmwi4syMEOQgA7Ie93uptxvnaLvpaX7Mpskl_btDXRevP3S_B35jY-GKo61DAJvNsLpFibzcWsfe7damWDi2M2shOUoVL_QTImGYdOVfL0H3IZxxTqHAwFZLQTGit0voOmseXkhseiEczkrpncNQd3a8abP3t95H_bWYG3e2DKPMhJg2g4sqmH1ztimUtMBwUu6p9h6qAw2GjsbfLZ3FxPNQMqFIpT9guwgb7G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201324691</pqid></control><display><type>article</type><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</creator><creatorcontrib>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</creatorcontrib><description>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0910222107</identifier><identifier>PMID: 20202922</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aged ; Anisotropy ; Biological Sciences ; Brain ; Brain - anatomy & histology ; Computer Simulation ; Corpus callosum ; Experimental design ; Female ; Fiber orientation ; Frequency shift ; Humans ; Imaging ; Magnetic fields ; Magnetic permeability ; Magnetic Resonance Imaging ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Phase contrast imaging ; Resonance ; Spatial distribution ; Tissues ; White matter</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (11), p.5130-5135</ispartof><rights>Copyright National Academy of Sciences Mar 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</citedby><cites>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664938$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664938$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20202922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Shmueli, Karin</creatorcontrib><creatorcontrib>Fukunaga, Masaki</creatorcontrib><creatorcontrib>van Gelderen, Peter</creatorcontrib><creatorcontrib>Merkle, Hellmut</creatorcontrib><creatorcontrib>Silva, Afonso C</creatorcontrib><creatorcontrib>Duyn, Jeff H</creatorcontrib><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</description><subject>Aged</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Computer Simulation</subject><subject>Corpus callosum</subject><subject>Experimental design</subject><subject>Female</subject><subject>Fiber orientation</subject><subject>Frequency shift</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic Resonance Imaging</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phase contrast imaging</subject><subject>Resonance</subject><subject>Spatial distribution</subject><subject>Tissues</subject><subject>White matter</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1vEzEQhi0EomnhzAlY9cJp2xl7_XVBQhUflYqQKJW4Wc7G2zpK7NT2Vsq_x6uEBjghH-yxn3k1M68JeYVwhiDZ-SbYfAYagVJaL56QGdaoFZ2Gp2QGQGWrOtodkeOclwCguYLn5IhCXZrSGfl57UL2xT_4sm3i0Hz9ftkkl2OwoXfNkNz96EK_bUpsyp1rYvIuFFt8DBM9T9aHpvicR9esfZ9iLmnsy5jcC_JssKvsXu73E3Lz6eOPiy_t1bfPlxcfrtqeK1nauaOSo7QdON0vKEfaiwHr0YnOoZLaIldz7RYLbhXgoJmmwi4syMEOQgA7Ie93uptxvnaLvpaX7Mpskl_btDXRevP3S_B35jY-GKo61DAJvNsLpFibzcWsfe7damWDi2M2shOUoVL_QTImGYdOVfL0H3IZxxTqHAwFZLQTGit0voOmseXkhseiEczkrpncNQd3a8abP3t95H_bWYG3e2DKPMhJg2g4sqmH1ztimUtMBwUu6p9h6qAw2GjsbfLZ3FxPNQMqFIpT9guwgb7G</recordid><startdate>20100316</startdate><enddate>20100316</enddate><creator>Lee, Jongho</creator><creator>Shmueli, Karin</creator><creator>Fukunaga, Masaki</creator><creator>van Gelderen, Peter</creator><creator>Merkle, Hellmut</creator><creator>Silva, Afonso C</creator><creator>Duyn, Jeff H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100316</creationdate><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><author>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aged</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Computer Simulation</topic><topic>Corpus callosum</topic><topic>Experimental design</topic><topic>Female</topic><topic>Fiber orientation</topic><topic>Frequency shift</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic Resonance Imaging</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phase contrast imaging</topic><topic>Resonance</topic><topic>Spatial distribution</topic><topic>Tissues</topic><topic>White matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Shmueli, Karin</creatorcontrib><creatorcontrib>Fukunaga, Masaki</creatorcontrib><creatorcontrib>van Gelderen, Peter</creatorcontrib><creatorcontrib>Merkle, Hellmut</creatorcontrib><creatorcontrib>Silva, Afonso C</creatorcontrib><creatorcontrib>Duyn, Jeff H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jongho</au><au>Shmueli, Karin</au><au>Fukunaga, Masaki</au><au>van Gelderen, Peter</au><au>Merkle, Hellmut</au><au>Silva, Afonso C</au><au>Duyn, Jeff H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-16</date><risdate>2010</risdate><volume>107</volume><issue>11</issue><spage>5130</spage><epage>5135</epage><pages>5130-5135</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20202922</pmid><doi>10.1073/pnas.0910222107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (11), p.5130-5135 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_20202922 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aged Anisotropy Biological Sciences Brain Brain - anatomy & histology Computer Simulation Corpus callosum Experimental design Female Fiber orientation Frequency shift Humans Imaging Magnetic fields Magnetic permeability Magnetic Resonance Imaging Molecular structure NMR Nuclear magnetic resonance Phase contrast imaging Resonance Spatial distribution Tissues White matter |
title | Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20MRI%20resonance%20frequency%20to%20the%20orientation%20of%20brain%20tissue%20microstructure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Jongho&rft.date=2010-03-16&rft.volume=107&rft.issue=11&rft.spage=5130&rft.epage=5135&rft.pages=5130-5135&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0910222107&rft_dat=%3Cjstor_pubme%3E25664938%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201324691&rft_id=info:pmid/20202922&rft_jstor_id=25664938&rfr_iscdi=true |