Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure

Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (11), p.5130-5135
Hauptverfasser: Lee, Jongho, Shmueli, Karin, Fukunaga, Masaki, van Gelderen, Peter, Merkle, Hellmut, Silva, Afonso C, Duyn, Jeff H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5135
container_issue 11
container_start_page 5130
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Lee, Jongho
Shmueli, Karin
Fukunaga, Masaki
van Gelderen, Peter
Merkle, Hellmut
Silva, Afonso C
Duyn, Jeff H
description Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.
doi_str_mv 10.1073/pnas.0910222107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20202922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664938</jstor_id><sourcerecordid>25664938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EomnhzAlY9cJp2xl7_XVBQhUflYqQKJW4Wc7G2zpK7NT2Vsq_x6uEBjghH-yxn3k1M68JeYVwhiDZ-SbYfAYagVJaL56QGdaoFZ2Gp2QGQGWrOtodkeOclwCguYLn5IhCXZrSGfl57UL2xT_4sm3i0Hz9ftkkl2OwoXfNkNz96EK_bUpsyp1rYvIuFFt8DBM9T9aHpvicR9esfZ9iLmnsy5jcC_JssKvsXu73E3Lz6eOPiy_t1bfPlxcfrtqeK1nauaOSo7QdON0vKEfaiwHr0YnOoZLaIldz7RYLbhXgoJmmwi4syMEOQgA7Ie93uptxvnaLvpaX7Mpskl_btDXRevP3S_B35jY-GKo61DAJvNsLpFibzcWsfe7damWDi2M2shOUoVL_QTImGYdOVfL0H3IZxxTqHAwFZLQTGit0voOmseXkhseiEczkrpncNQd3a8abP3t95H_bWYG3e2DKPMhJg2g4sqmH1ztimUtMBwUu6p9h6qAw2GjsbfLZ3FxPNQMqFIpT9guwgb7G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201324691</pqid></control><display><type>article</type><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</creator><creatorcontrib>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</creatorcontrib><description>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0910222107</identifier><identifier>PMID: 20202922</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aged ; Anisotropy ; Biological Sciences ; Brain ; Brain - anatomy &amp; histology ; Computer Simulation ; Corpus callosum ; Experimental design ; Female ; Fiber orientation ; Frequency shift ; Humans ; Imaging ; Magnetic fields ; Magnetic permeability ; Magnetic Resonance Imaging ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Phase contrast imaging ; Resonance ; Spatial distribution ; Tissues ; White matter</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (11), p.5130-5135</ispartof><rights>Copyright National Academy of Sciences Mar 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</citedby><cites>FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664938$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664938$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20202922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Shmueli, Karin</creatorcontrib><creatorcontrib>Fukunaga, Masaki</creatorcontrib><creatorcontrib>van Gelderen, Peter</creatorcontrib><creatorcontrib>Merkle, Hellmut</creatorcontrib><creatorcontrib>Silva, Afonso C</creatorcontrib><creatorcontrib>Duyn, Jeff H</creatorcontrib><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</description><subject>Aged</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computer Simulation</subject><subject>Corpus callosum</subject><subject>Experimental design</subject><subject>Female</subject><subject>Fiber orientation</subject><subject>Frequency shift</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic Resonance Imaging</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phase contrast imaging</subject><subject>Resonance</subject><subject>Spatial distribution</subject><subject>Tissues</subject><subject>White matter</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1vEzEQhi0EomnhzAlY9cJp2xl7_XVBQhUflYqQKJW4Wc7G2zpK7NT2Vsq_x6uEBjghH-yxn3k1M68JeYVwhiDZ-SbYfAYagVJaL56QGdaoFZ2Gp2QGQGWrOtodkeOclwCguYLn5IhCXZrSGfl57UL2xT_4sm3i0Hz9ftkkl2OwoXfNkNz96EK_bUpsyp1rYvIuFFt8DBM9T9aHpvicR9esfZ9iLmnsy5jcC_JssKvsXu73E3Lz6eOPiy_t1bfPlxcfrtqeK1nauaOSo7QdON0vKEfaiwHr0YnOoZLaIldz7RYLbhXgoJmmwi4syMEOQgA7Ie93uptxvnaLvpaX7Mpskl_btDXRevP3S_B35jY-GKo61DAJvNsLpFibzcWsfe7damWDi2M2shOUoVL_QTImGYdOVfL0H3IZxxTqHAwFZLQTGit0voOmseXkhseiEczkrpncNQd3a8abP3t95H_bWYG3e2DKPMhJg2g4sqmH1ztimUtMBwUu6p9h6qAw2GjsbfLZ3FxPNQMqFIpT9guwgb7G</recordid><startdate>20100316</startdate><enddate>20100316</enddate><creator>Lee, Jongho</creator><creator>Shmueli, Karin</creator><creator>Fukunaga, Masaki</creator><creator>van Gelderen, Peter</creator><creator>Merkle, Hellmut</creator><creator>Silva, Afonso C</creator><creator>Duyn, Jeff H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100316</creationdate><title>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</title><author>Lee, Jongho ; Shmueli, Karin ; Fukunaga, Masaki ; van Gelderen, Peter ; Merkle, Hellmut ; Silva, Afonso C ; Duyn, Jeff H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-be27517a40e9cd2512c6f19cde64e1879a158b9edd5a801f93926ada07faf6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aged</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computer Simulation</topic><topic>Corpus callosum</topic><topic>Experimental design</topic><topic>Female</topic><topic>Fiber orientation</topic><topic>Frequency shift</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic Resonance Imaging</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phase contrast imaging</topic><topic>Resonance</topic><topic>Spatial distribution</topic><topic>Tissues</topic><topic>White matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jongho</creatorcontrib><creatorcontrib>Shmueli, Karin</creatorcontrib><creatorcontrib>Fukunaga, Masaki</creatorcontrib><creatorcontrib>van Gelderen, Peter</creatorcontrib><creatorcontrib>Merkle, Hellmut</creatorcontrib><creatorcontrib>Silva, Afonso C</creatorcontrib><creatorcontrib>Duyn, Jeff H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jongho</au><au>Shmueli, Karin</au><au>Fukunaga, Masaki</au><au>van Gelderen, Peter</au><au>Merkle, Hellmut</au><au>Silva, Afonso C</au><au>Duyn, Jeff H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-16</date><risdate>2010</risdate><volume>107</volume><issue>11</issue><spage>5130</spage><epage>5135</epage><pages>5130-5135</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent advances in high-field (≥7 T) MRI have made it possible to study the fine structure of the human brain at the level of fiber bundles and cortical layers. In particular, techniques aimed at detecting MRI resonance frequency shifts originating from local variation in magnetic susceptibility and other sources have greatly improved the visualization of these structures. A recent theoretical study [He X, Yablonskiy DA (2009) Proc Natl Acad Sci USA 106:13558–13563] suggests that MRI resonance frequency may report not only on tissue composition, but also on microscopic compartmentalization of susceptibility inclusions and their orientation relative to the magnetic field. The proposed sensitivity to tissue structure may greatly expand the information available with conventional MRI techniques. To investigate this possibility, we studied postmortem tissue samples from human corpus callosum with an experimental design that allowed separation of microstructural effects from confounding macrostructural effects. The results show that MRI resonance frequency does depend on microstructural orientation. Furthermore, the spatial distribution of the resonance frequency shift suggests an origin related to anisotropic susceptibility effects rather than microscopic compartmentalization. This anisotropy, which has been shown to depend on molecular ordering, may provide valuable information about tissue molecular structure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20202922</pmid><doi>10.1073/pnas.0910222107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (11), p.5130-5135
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20202922
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aged
Anisotropy
Biological Sciences
Brain
Brain - anatomy & histology
Computer Simulation
Corpus callosum
Experimental design
Female
Fiber orientation
Frequency shift
Humans
Imaging
Magnetic fields
Magnetic permeability
Magnetic Resonance Imaging
Molecular structure
NMR
Nuclear magnetic resonance
Phase contrast imaging
Resonance
Spatial distribution
Tissues
White matter
title Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20MRI%20resonance%20frequency%20to%20the%20orientation%20of%20brain%20tissue%20microstructure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Jongho&rft.date=2010-03-16&rft.volume=107&rft.issue=11&rft.spage=5130&rft.epage=5135&rft.pages=5130-5135&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0910222107&rft_dat=%3Cjstor_pubme%3E25664938%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201324691&rft_id=info:pmid/20202922&rft_jstor_id=25664938&rfr_iscdi=true