Cholesterol trafficking is required for mTOR activation in endothelial cells
Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, howeve...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (10), p.4764-4769 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4769 |
---|---|
container_issue | 10 |
container_start_page | 4764 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Xu, Jing Dang, Yongjun Ren, Yunzhao R Liu, Jun O |
description | Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis. |
doi_str_mv | 10.1073/pnas.0910872107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20176935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664872</jstor_id><sourcerecordid>25664872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</originalsourceid><addsrcrecordid>eNpdkUtvEzEURi0EomlhzQoYdcNq2uvH-LGphCJeUqRK0K4tj8dOHCbj1J6pxL_Ho4QGWFm2j4_vvR9CbzBcYRD0ej-YfAUKgxSkHDxDC1x2NWcKnqMFABG1ZISdofOctwCgGgkv0RkBLLiizQKtlpvYuzy6FPtqTMb7YH-GYV2FXCX3MIXkusrHVO3ubr9Xxo7h0YwhDlUYKjd0cdy4Ppi-sq7v8yv0wps-u9fH9QLdf_50t_xar26_fFt-XNW2aZqxVmCYctYa1nkusRHegpIGU-ml86wzVnggwGhDpOBt20JrOXgFijSsA0Uv0M3Bu5_aneusG0rlvd6nsDPpl44m6H9vhrDR6_ioSRkGNKQIPhwFKT5MpX29C3luwQwuTlkLShlISVghL_8jt3FKQ-lOlyEyShXwAl0fIJtizsn5p1Iw6DknPeekTzmVF-_-7uCJ_xNMAd4fgfnlSSdmJRN8ruztgdjmMaaToeGclV9OBm-iNusUsr7_UfwUsMRUMEF_AzPHrGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201433906</pqid></control><display><type>article</type><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</creator><creatorcontrib>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</creatorcontrib><description>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0910872107</identifier><identifier>PMID: 20176935</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Androstenes - pharmacology ; Angiogenesis ; Biological Sciences ; Biological Transport ; Blotting, Western ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Cycle - drug effects ; Cell growth ; Cell Line ; Cell lines ; Cell membranes ; Cell Proliferation - drug effects ; Cholesterol ; Cholesterol - metabolism ; Cholesterol - pharmacology ; Cholesterols ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; Cyclin-Dependent Kinase Inhibitor p27 - metabolism ; Cyclodextrins - pharmacology ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Enzyme Inhibitors - pharmacology ; Homeostasis ; Humans ; Imipramine - pharmacology ; Intracellular Signaling Peptides and Proteins - metabolism ; Itraconazole - pharmacology ; Lysosomes ; Mechanistic Target of Rapamycin Complex 1 ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Membranes ; Metabolic disorders ; Multiprotein Complexes ; Phosphorylation ; Physiological regulation ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Ribonucleic acid ; RNA ; RNA Interference ; Thapsigargin - pharmacology ; TOR Serine-Threonine Kinases ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4764-4769</ispartof><rights>Copyright National Academy of Sciences Mar 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</citedby><cites>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664872$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664872$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20176935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Dang, Yongjun</creatorcontrib><creatorcontrib>Ren, Yunzhao R</creatorcontrib><creatorcontrib>Liu, Jun O</creatorcontrib><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</description><subject>Androstenes - pharmacology</subject><subject>Angiogenesis</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Blotting, Western</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle - drug effects</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell membranes</subject><subject>Cell Proliferation - drug effects</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol - pharmacology</subject><subject>Cholesterols</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</subject><subject>Cyclodextrins - pharmacology</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Imipramine - pharmacology</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Itraconazole - pharmacology</subject><subject>Lysosomes</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membranes</subject><subject>Metabolic disorders</subject><subject>Multiprotein Complexes</subject><subject>Phosphorylation</subject><subject>Physiological regulation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>Thapsigargin - pharmacology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEURi0EomlhzQoYdcNq2uvH-LGphCJeUqRK0K4tj8dOHCbj1J6pxL_Ho4QGWFm2j4_vvR9CbzBcYRD0ej-YfAUKgxSkHDxDC1x2NWcKnqMFABG1ZISdofOctwCgGgkv0RkBLLiizQKtlpvYuzy6FPtqTMb7YH-GYV2FXCX3MIXkusrHVO3ubr9Xxo7h0YwhDlUYKjd0cdy4Ppi-sq7v8yv0wps-u9fH9QLdf_50t_xar26_fFt-XNW2aZqxVmCYctYa1nkusRHegpIGU-ml86wzVnggwGhDpOBt20JrOXgFijSsA0Uv0M3Bu5_aneusG0rlvd6nsDPpl44m6H9vhrDR6_ioSRkGNKQIPhwFKT5MpX29C3luwQwuTlkLShlISVghL_8jt3FKQ-lOlyEyShXwAl0fIJtizsn5p1Iw6DknPeekTzmVF-_-7uCJ_xNMAd4fgfnlSSdmJRN8ruztgdjmMaaToeGclV9OBm-iNusUsr7_UfwUsMRUMEF_AzPHrGU</recordid><startdate>20100309</startdate><enddate>20100309</enddate><creator>Xu, Jing</creator><creator>Dang, Yongjun</creator><creator>Ren, Yunzhao R</creator><creator>Liu, Jun O</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100309</creationdate><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><author>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Androstenes - pharmacology</topic><topic>Angiogenesis</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Blotting, Western</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle - drug effects</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell membranes</topic><topic>Cell Proliferation - drug effects</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol - pharmacology</topic><topic>Cholesterols</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</topic><topic>Cyclodextrins - pharmacology</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Imipramine - pharmacology</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Itraconazole - pharmacology</topic><topic>Lysosomes</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membranes</topic><topic>Metabolic disorders</topic><topic>Multiprotein Complexes</topic><topic>Phosphorylation</topic><topic>Physiological regulation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>Thapsigargin - pharmacology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Dang, Yongjun</creatorcontrib><creatorcontrib>Ren, Yunzhao R</creatorcontrib><creatorcontrib>Liu, Jun O</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jing</au><au>Dang, Yongjun</au><au>Ren, Yunzhao R</au><au>Liu, Jun O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholesterol trafficking is required for mTOR activation in endothelial cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-09</date><risdate>2010</risdate><volume>107</volume><issue>10</issue><spage>4764</spage><epage>4769</epage><pages>4764-4769</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20176935</pmid><doi>10.1073/pnas.0910872107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4764-4769 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_20176935 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Androstenes - pharmacology Angiogenesis Biological Sciences Biological Transport Blotting, Western Carrier Proteins - genetics Carrier Proteins - metabolism Cell Cycle - drug effects Cell growth Cell Line Cell lines Cell membranes Cell Proliferation - drug effects Cholesterol Cholesterol - metabolism Cholesterol - pharmacology Cholesterols Cyclin-Dependent Kinase Inhibitor p21 - metabolism Cyclin-Dependent Kinase Inhibitor p27 - metabolism Cyclodextrins - pharmacology Endothelial cells Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - metabolism Enzyme Inhibitors - pharmacology Homeostasis Humans Imipramine - pharmacology Intracellular Signaling Peptides and Proteins - metabolism Itraconazole - pharmacology Lysosomes Mechanistic Target of Rapamycin Complex 1 Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Membranes Metabolic disorders Multiprotein Complexes Phosphorylation Physiological regulation Protein-Serine-Threonine Kinases - metabolism Proteins Ribonucleic acid RNA RNA Interference Thapsigargin - pharmacology TOR Serine-Threonine Kinases Transcription Factors - metabolism |
title | Cholesterol trafficking is required for mTOR activation in endothelial cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholesterol%20trafficking%20is%20required%20for%20mTOR%20activation%20in%20endothelial%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Jing&rft.date=2010-03-09&rft.volume=107&rft.issue=10&rft.spage=4764&rft.epage=4769&rft.pages=4764-4769&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0910872107&rft_dat=%3Cjstor_pubme%3E25664872%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201433906&rft_id=info:pmid/20176935&rft_jstor_id=25664872&rfr_iscdi=true |