Cholesterol trafficking is required for mTOR activation in endothelial cells

Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (10), p.4764-4769
Hauptverfasser: Xu, Jing, Dang, Yongjun, Ren, Yunzhao R, Liu, Jun O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4769
container_issue 10
container_start_page 4764
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Xu, Jing
Dang, Yongjun
Ren, Yunzhao R
Liu, Jun O
description Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.
doi_str_mv 10.1073/pnas.0910872107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20176935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664872</jstor_id><sourcerecordid>25664872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</originalsourceid><addsrcrecordid>eNpdkUtvEzEURi0EomlhzQoYdcNq2uvH-LGphCJeUqRK0K4tj8dOHCbj1J6pxL_Ho4QGWFm2j4_vvR9CbzBcYRD0ej-YfAUKgxSkHDxDC1x2NWcKnqMFABG1ZISdofOctwCgGgkv0RkBLLiizQKtlpvYuzy6FPtqTMb7YH-GYV2FXCX3MIXkusrHVO3ubr9Xxo7h0YwhDlUYKjd0cdy4Ppi-sq7v8yv0wps-u9fH9QLdf_50t_xar26_fFt-XNW2aZqxVmCYctYa1nkusRHegpIGU-ml86wzVnggwGhDpOBt20JrOXgFijSsA0Uv0M3Bu5_aneusG0rlvd6nsDPpl44m6H9vhrDR6_ioSRkGNKQIPhwFKT5MpX29C3luwQwuTlkLShlISVghL_8jt3FKQ-lOlyEyShXwAl0fIJtizsn5p1Iw6DknPeekTzmVF-_-7uCJ_xNMAd4fgfnlSSdmJRN8ruztgdjmMaaToeGclV9OBm-iNusUsr7_UfwUsMRUMEF_AzPHrGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201433906</pqid></control><display><type>article</type><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</creator><creatorcontrib>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</creatorcontrib><description>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0910872107</identifier><identifier>PMID: 20176935</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Androstenes - pharmacology ; Angiogenesis ; Biological Sciences ; Biological Transport ; Blotting, Western ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Cycle - drug effects ; Cell growth ; Cell Line ; Cell lines ; Cell membranes ; Cell Proliferation - drug effects ; Cholesterol ; Cholesterol - metabolism ; Cholesterol - pharmacology ; Cholesterols ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; Cyclin-Dependent Kinase Inhibitor p27 - metabolism ; Cyclodextrins - pharmacology ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Enzyme Inhibitors - pharmacology ; Homeostasis ; Humans ; Imipramine - pharmacology ; Intracellular Signaling Peptides and Proteins - metabolism ; Itraconazole - pharmacology ; Lysosomes ; Mechanistic Target of Rapamycin Complex 1 ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Membranes ; Metabolic disorders ; Multiprotein Complexes ; Phosphorylation ; Physiological regulation ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Ribonucleic acid ; RNA ; RNA Interference ; Thapsigargin - pharmacology ; TOR Serine-Threonine Kinases ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4764-4769</ispartof><rights>Copyright National Academy of Sciences Mar 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</citedby><cites>FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664872$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664872$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20176935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Dang, Yongjun</creatorcontrib><creatorcontrib>Ren, Yunzhao R</creatorcontrib><creatorcontrib>Liu, Jun O</creatorcontrib><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</description><subject>Androstenes - pharmacology</subject><subject>Angiogenesis</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Blotting, Western</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle - drug effects</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell membranes</subject><subject>Cell Proliferation - drug effects</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol - pharmacology</subject><subject>Cholesterols</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</subject><subject>Cyclodextrins - pharmacology</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Imipramine - pharmacology</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Itraconazole - pharmacology</subject><subject>Lysosomes</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membranes</subject><subject>Metabolic disorders</subject><subject>Multiprotein Complexes</subject><subject>Phosphorylation</subject><subject>Physiological regulation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>Thapsigargin - pharmacology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEURi0EomlhzQoYdcNq2uvH-LGphCJeUqRK0K4tj8dOHCbj1J6pxL_Ho4QGWFm2j4_vvR9CbzBcYRD0ej-YfAUKgxSkHDxDC1x2NWcKnqMFABG1ZISdofOctwCgGgkv0RkBLLiizQKtlpvYuzy6FPtqTMb7YH-GYV2FXCX3MIXkusrHVO3ubr9Xxo7h0YwhDlUYKjd0cdy4Ppi-sq7v8yv0wps-u9fH9QLdf_50t_xar26_fFt-XNW2aZqxVmCYctYa1nkusRHegpIGU-ml86wzVnggwGhDpOBt20JrOXgFijSsA0Uv0M3Bu5_aneusG0rlvd6nsDPpl44m6H9vhrDR6_ioSRkGNKQIPhwFKT5MpX29C3luwQwuTlkLShlISVghL_8jt3FKQ-lOlyEyShXwAl0fIJtizsn5p1Iw6DknPeekTzmVF-_-7uCJ_xNMAd4fgfnlSSdmJRN8ruztgdjmMaaToeGclV9OBm-iNusUsr7_UfwUsMRUMEF_AzPHrGU</recordid><startdate>20100309</startdate><enddate>20100309</enddate><creator>Xu, Jing</creator><creator>Dang, Yongjun</creator><creator>Ren, Yunzhao R</creator><creator>Liu, Jun O</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100309</creationdate><title>Cholesterol trafficking is required for mTOR activation in endothelial cells</title><author>Xu, Jing ; Dang, Yongjun ; Ren, Yunzhao R ; Liu, Jun O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-90a49ecca4df681a7fc098a138f8ef4dac7f0204352876bbb0bc60f909254d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Androstenes - pharmacology</topic><topic>Angiogenesis</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Blotting, Western</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle - drug effects</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell membranes</topic><topic>Cell Proliferation - drug effects</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol - pharmacology</topic><topic>Cholesterols</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p27 - metabolism</topic><topic>Cyclodextrins - pharmacology</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Imipramine - pharmacology</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Itraconazole - pharmacology</topic><topic>Lysosomes</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membranes</topic><topic>Metabolic disorders</topic><topic>Multiprotein Complexes</topic><topic>Phosphorylation</topic><topic>Physiological regulation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>Thapsigargin - pharmacology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Dang, Yongjun</creatorcontrib><creatorcontrib>Ren, Yunzhao R</creatorcontrib><creatorcontrib>Liu, Jun O</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jing</au><au>Dang, Yongjun</au><au>Ren, Yunzhao R</au><au>Liu, Jun O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholesterol trafficking is required for mTOR activation in endothelial cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-09</date><risdate>2010</risdate><volume>107</volume><issue>10</issue><spage>4764</spage><epage>4769</epage><pages>4764-4769</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mammalian target of rapamycin (mTOR) constitutes a nodal point of a signaling network that regulates cell growth and proliferation in response to various environmental cues ranging from growth factor stimulation to nutrients to stress. Whether mTOR is also affected by cholesterol homeostasis, however, has remained unknown. We report that blockade of cholesterol trafficking through lysosome by a newly identified inhibitor of angiogenesis, itraconazole, leads to inhibition of mTOR activity in endothelial cells. Inhibition of mTOR by itraconazole but not rapamycin can be partially restored by extracellular cholesterol delivered by cyclodextrin. Moreover, other known inhibitors of endosomal/lysosomal cholesterol trafficking as well as siRNA knockdown of Niemann-Pick disease type C (NPC) 1 and NPC2 also cause inhibition of mTOR in endothelial cells. In addition, both the accumulation of cholesterol in the lysosome and inhibition of mTOR caused by itraconazole can be reversed by thapsigarin. These observations suggest that mTOR is likely to be involved in sensing membrane sterol concentrations in endothelial cells, and the cholesterol trafficking pathway is a promising target for the discovery of inhibitors of angiogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20176935</pmid><doi>10.1073/pnas.0910872107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4764-4769
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20176935
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Androstenes - pharmacology
Angiogenesis
Biological Sciences
Biological Transport
Blotting, Western
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Cycle - drug effects
Cell growth
Cell Line
Cell lines
Cell membranes
Cell Proliferation - drug effects
Cholesterol
Cholesterol - metabolism
Cholesterol - pharmacology
Cholesterols
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Cyclin-Dependent Kinase Inhibitor p27 - metabolism
Cyclodextrins - pharmacology
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Enzyme Inhibitors - pharmacology
Homeostasis
Humans
Imipramine - pharmacology
Intracellular Signaling Peptides and Proteins - metabolism
Itraconazole - pharmacology
Lysosomes
Mechanistic Target of Rapamycin Complex 1
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Membranes
Metabolic disorders
Multiprotein Complexes
Phosphorylation
Physiological regulation
Protein-Serine-Threonine Kinases - metabolism
Proteins
Ribonucleic acid
RNA
RNA Interference
Thapsigargin - pharmacology
TOR Serine-Threonine Kinases
Transcription Factors - metabolism
title Cholesterol trafficking is required for mTOR activation in endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholesterol%20trafficking%20is%20required%20for%20mTOR%20activation%20in%20endothelial%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Jing&rft.date=2010-03-09&rft.volume=107&rft.issue=10&rft.spage=4764&rft.epage=4769&rft.pages=4764-4769&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0910872107&rft_dat=%3Cjstor_pubme%3E25664872%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201433906&rft_id=info:pmid/20176935&rft_jstor_id=25664872&rfr_iscdi=true