Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy

Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (9), p.4147-4152
Hauptverfasser: Krause, Ulf, Harris, Sean, Green, Angela, Ylostalo, Joni, Zeitouni, Suzanne, Lee, Narae, Gregory, Carl A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4152
container_issue 9
container_start_page 4147
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Krause, Ulf
Harris, Sean
Green, Angela
Ylostalo, Joni
Zeitouni, Suzanne
Lee, Narae
Gregory, Carl A
description Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation of the peroxisome proliferator-activated receptor-γ (PPARγ)-mediated pathway results in adipogenesis. We therefore compared the effect of glycogen-synthetase-kinase-3β (GSK3β) inhibitors and PPARγ inhibitors on osteogenesis by hMSCs. Both compounds altered the intracellular distribution of β-catenin and GSK3β in a manner consistent with activation of Wnt signaling. With osteogenic supplements, the GSK3β inhibitor 6-bromo-indirubin-3'-oxime (BIO) and the PPARγ inhibitor GW9662 (GW) enhanced early osteogenic markers, alkaline phosphatase (ALP), and osteoprotegerin (OPG) by hMSCs and transcriptome analysis demonstrated up-regulation of genes encoding bone-related structural proteins. At higher doses of the inhibitors, ALP levels were attenuated, but dexamethasone-induced biomineralization was accelerated. When hMSCs were pretreated with BIO or GW and implanted into experimentally induced nonself healing calvarial defects, GW treatment substantially increased the capacity of the cells to repair the bone lesion, whereas BIO treatment had no significant effect. Further investigation indicated that unlike GW, BIO induced cell cycle inhibition in vitro. Furthermore, we found that GW treatment significantly reduced expression of chemokines that may exacerbate neutrophil- and macrophage-mediated cell rejection. These data suggest that use of PPARγ inhibitors during the preparation of hMSCs may enhance the capacity of the cells for osteogenic cytotherapy, whereas adenine analogs such as BIO can adversely affect the viability of hMSC preparations in vitro and in vivo.
doi_str_mv 10.1073/pnas.0914360107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20150512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537093</jstor_id><sourcerecordid>40537093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-c4e030f9c8f3d9a057b0c281929f19f8e097e58aa3d49ac3c56b9409612284243</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EosvCmRNgceGUdvyRxL4goYovqRJIUHG0vI6z61ViB9tZqf89Dlu2hQunkWd-8_TGD6HnBM4JtOxi8jqdgyScNVAaD9CKlFfVcAkP0QqAtpXglJ-hJyntAUDWAh6jMwqkhprQFZq_7nQctbFzdkYPeAzdPOjsgsehx0b74H_3f_iMk9t6PTi_xc7jcR6ym0K2yyDHMBbI2GFIuA8Ru3GK4WA7HFK2wfluNtkdLM47G_V08xQ96vWQ7LPbukbXH95_v_xUXX35-Pny3VVlatHkynALDHppRM86qaFuN2CoIJLKnsheWJCtrYXWrONSG2bqZiM5yIZQupzN1ujtUXeaN6PtTDEb9aCm6EYdb1TQTv098W6ntuGgyjoQ0hSBN7cCMfycbcpqdGk5U3sb5qRaXjdM1CD-TzLWUEZKWaPX_5D7MMfys0mVXDgDQdsCXRwhE0NK0fYn0wTUEr1aold30ZeNl_dvPfF_sr4HLJt3cq2SihO-KLw4AvuUQzwRHGrWglyMvzrOex2U3kaX1PW3Is-AiCLTtuwXb7jJYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201430827</pqid></control><display><type>article</type><title>Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Krause, Ulf ; Harris, Sean ; Green, Angela ; Ylostalo, Joni ; Zeitouni, Suzanne ; Lee, Narae ; Gregory, Carl A</creator><creatorcontrib>Krause, Ulf ; Harris, Sean ; Green, Angela ; Ylostalo, Joni ; Zeitouni, Suzanne ; Lee, Narae ; Gregory, Carl A</creatorcontrib><description>Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation of the peroxisome proliferator-activated receptor-γ (PPARγ)-mediated pathway results in adipogenesis. We therefore compared the effect of glycogen-synthetase-kinase-3β (GSK3β) inhibitors and PPARγ inhibitors on osteogenesis by hMSCs. Both compounds altered the intracellular distribution of β-catenin and GSK3β in a manner consistent with activation of Wnt signaling. With osteogenic supplements, the GSK3β inhibitor 6-bromo-indirubin-3'-oxime (BIO) and the PPARγ inhibitor GW9662 (GW) enhanced early osteogenic markers, alkaline phosphatase (ALP), and osteoprotegerin (OPG) by hMSCs and transcriptome analysis demonstrated up-regulation of genes encoding bone-related structural proteins. At higher doses of the inhibitors, ALP levels were attenuated, but dexamethasone-induced biomineralization was accelerated. When hMSCs were pretreated with BIO or GW and implanted into experimentally induced nonself healing calvarial defects, GW treatment substantially increased the capacity of the cells to repair the bone lesion, whereas BIO treatment had no significant effect. Further investigation indicated that unlike GW, BIO induced cell cycle inhibition in vitro. Furthermore, we found that GW treatment significantly reduced expression of chemokines that may exacerbate neutrophil- and macrophage-mediated cell rejection. These data suggest that use of PPARγ inhibitors during the preparation of hMSCs may enhance the capacity of the cells for osteogenic cytotherapy, whereas adenine analogs such as BIO can adversely affect the viability of hMSC preparations in vitro and in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914360107</identifier><identifier>PMID: 20150512</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alkaline Phosphatase - metabolism ; beta Catenin - metabolism ; Biocompatible Materials ; Biological Sciences ; Blood vessels ; Bone formation ; Bone marrow ; Bones ; Cell cycle ; Cultured cells ; Enzyme Inhibitors - pharmacology ; Gene Expression Profiling ; Genes ; Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; Indoles - pharmacology ; Intercellular Signaling Peptides and Proteins - metabolism ; Lesions ; Lipogenesis ; Mesenchymal stem cells ; Multipotent Stem Cells - drug effects ; Multipotent Stem Cells - enzymology ; Multipotent Stem Cells - metabolism ; Osteoblasts ; Osteogenesis - drug effects ; Osteoprotegerin - metabolism ; Oximes - pharmacology ; Pharmaceuticals ; PPAR gamma - antagonists &amp; inhibitors ; Signal transduction ; Signal Transduction - drug effects ; Stem cells ; Stromal Cells - drug effects ; Stromal Cells - enzymology ; Stromal Cells - metabolism ; Tissue Engineering ; Wnt Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4147-4152</ispartof><rights>Copyright National Academy of Sciences Mar 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-c4e030f9c8f3d9a057b0c281929f19f8e097e58aa3d49ac3c56b9409612284243</citedby><cites>FETCH-LOGICAL-c586t-c4e030f9c8f3d9a057b0c281929f19f8e097e58aa3d49ac3c56b9409612284243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537093$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537093$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20150512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krause, Ulf</creatorcontrib><creatorcontrib>Harris, Sean</creatorcontrib><creatorcontrib>Green, Angela</creatorcontrib><creatorcontrib>Ylostalo, Joni</creatorcontrib><creatorcontrib>Zeitouni, Suzanne</creatorcontrib><creatorcontrib>Lee, Narae</creatorcontrib><creatorcontrib>Gregory, Carl A</creatorcontrib><title>Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation of the peroxisome proliferator-activated receptor-γ (PPARγ)-mediated pathway results in adipogenesis. We therefore compared the effect of glycogen-synthetase-kinase-3β (GSK3β) inhibitors and PPARγ inhibitors on osteogenesis by hMSCs. Both compounds altered the intracellular distribution of β-catenin and GSK3β in a manner consistent with activation of Wnt signaling. With osteogenic supplements, the GSK3β inhibitor 6-bromo-indirubin-3'-oxime (BIO) and the PPARγ inhibitor GW9662 (GW) enhanced early osteogenic markers, alkaline phosphatase (ALP), and osteoprotegerin (OPG) by hMSCs and transcriptome analysis demonstrated up-regulation of genes encoding bone-related structural proteins. At higher doses of the inhibitors, ALP levels were attenuated, but dexamethasone-induced biomineralization was accelerated. When hMSCs were pretreated with BIO or GW and implanted into experimentally induced nonself healing calvarial defects, GW treatment substantially increased the capacity of the cells to repair the bone lesion, whereas BIO treatment had no significant effect. Further investigation indicated that unlike GW, BIO induced cell cycle inhibition in vitro. Furthermore, we found that GW treatment significantly reduced expression of chemokines that may exacerbate neutrophil- and macrophage-mediated cell rejection. These data suggest that use of PPARγ inhibitors during the preparation of hMSCs may enhance the capacity of the cells for osteogenic cytotherapy, whereas adenine analogs such as BIO can adversely affect the viability of hMSC preparations in vitro and in vivo.</description><subject>Alkaline Phosphatase - metabolism</subject><subject>beta Catenin - metabolism</subject><subject>Biocompatible Materials</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Bone formation</subject><subject>Bone marrow</subject><subject>Bones</subject><subject>Cell cycle</subject><subject>Cultured cells</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Lesions</subject><subject>Lipogenesis</subject><subject>Mesenchymal stem cells</subject><subject>Multipotent Stem Cells - drug effects</subject><subject>Multipotent Stem Cells - enzymology</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Osteoblasts</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoprotegerin - metabolism</subject><subject>Oximes - pharmacology</subject><subject>Pharmaceuticals</subject><subject>PPAR gamma - antagonists &amp; inhibitors</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Stem cells</subject><subject>Stromal Cells - drug effects</subject><subject>Stromal Cells - enzymology</subject><subject>Stromal Cells - metabolism</subject><subject>Tissue Engineering</subject><subject>Wnt Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EosvCmRNgceGUdvyRxL4goYovqRJIUHG0vI6z61ViB9tZqf89Dlu2hQunkWd-8_TGD6HnBM4JtOxi8jqdgyScNVAaD9CKlFfVcAkP0QqAtpXglJ-hJyntAUDWAh6jMwqkhprQFZq_7nQctbFzdkYPeAzdPOjsgsehx0b74H_3f_iMk9t6PTi_xc7jcR6ym0K2yyDHMBbI2GFIuA8Ru3GK4WA7HFK2wfluNtkdLM47G_V08xQ96vWQ7LPbukbXH95_v_xUXX35-Pny3VVlatHkynALDHppRM86qaFuN2CoIJLKnsheWJCtrYXWrONSG2bqZiM5yIZQupzN1ujtUXeaN6PtTDEb9aCm6EYdb1TQTv098W6ntuGgyjoQ0hSBN7cCMfycbcpqdGk5U3sb5qRaXjdM1CD-TzLWUEZKWaPX_5D7MMfys0mVXDgDQdsCXRwhE0NK0fYn0wTUEr1aold30ZeNl_dvPfF_sr4HLJt3cq2SihO-KLw4AvuUQzwRHGrWglyMvzrOex2U3kaX1PW3Is-AiCLTtuwXb7jJYg</recordid><startdate>20100302</startdate><enddate>20100302</enddate><creator>Krause, Ulf</creator><creator>Harris, Sean</creator><creator>Green, Angela</creator><creator>Ylostalo, Joni</creator><creator>Zeitouni, Suzanne</creator><creator>Lee, Narae</creator><creator>Gregory, Carl A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100302</creationdate><title>Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy</title><author>Krause, Ulf ; Harris, Sean ; Green, Angela ; Ylostalo, Joni ; Zeitouni, Suzanne ; Lee, Narae ; Gregory, Carl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-c4e030f9c8f3d9a057b0c281929f19f8e097e58aa3d49ac3c56b9409612284243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>beta Catenin - metabolism</topic><topic>Biocompatible Materials</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Bone formation</topic><topic>Bone marrow</topic><topic>Bones</topic><topic>Cell cycle</topic><topic>Cultured cells</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Lesions</topic><topic>Lipogenesis</topic><topic>Mesenchymal stem cells</topic><topic>Multipotent Stem Cells - drug effects</topic><topic>Multipotent Stem Cells - enzymology</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Osteoblasts</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoprotegerin - metabolism</topic><topic>Oximes - pharmacology</topic><topic>Pharmaceuticals</topic><topic>PPAR gamma - antagonists &amp; inhibitors</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Stem cells</topic><topic>Stromal Cells - drug effects</topic><topic>Stromal Cells - enzymology</topic><topic>Stromal Cells - metabolism</topic><topic>Tissue Engineering</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krause, Ulf</creatorcontrib><creatorcontrib>Harris, Sean</creatorcontrib><creatorcontrib>Green, Angela</creatorcontrib><creatorcontrib>Ylostalo, Joni</creatorcontrib><creatorcontrib>Zeitouni, Suzanne</creatorcontrib><creatorcontrib>Lee, Narae</creatorcontrib><creatorcontrib>Gregory, Carl A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krause, Ulf</au><au>Harris, Sean</au><au>Green, Angela</au><au>Ylostalo, Joni</au><au>Zeitouni, Suzanne</au><au>Lee, Narae</au><au>Gregory, Carl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-02</date><risdate>2010</risdate><volume>107</volume><issue>9</issue><spage>4147</spage><epage>4152</epage><pages>4147-4152</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation of the peroxisome proliferator-activated receptor-γ (PPARγ)-mediated pathway results in adipogenesis. We therefore compared the effect of glycogen-synthetase-kinase-3β (GSK3β) inhibitors and PPARγ inhibitors on osteogenesis by hMSCs. Both compounds altered the intracellular distribution of β-catenin and GSK3β in a manner consistent with activation of Wnt signaling. With osteogenic supplements, the GSK3β inhibitor 6-bromo-indirubin-3'-oxime (BIO) and the PPARγ inhibitor GW9662 (GW) enhanced early osteogenic markers, alkaline phosphatase (ALP), and osteoprotegerin (OPG) by hMSCs and transcriptome analysis demonstrated up-regulation of genes encoding bone-related structural proteins. At higher doses of the inhibitors, ALP levels were attenuated, but dexamethasone-induced biomineralization was accelerated. When hMSCs were pretreated with BIO or GW and implanted into experimentally induced nonself healing calvarial defects, GW treatment substantially increased the capacity of the cells to repair the bone lesion, whereas BIO treatment had no significant effect. Further investigation indicated that unlike GW, BIO induced cell cycle inhibition in vitro. Furthermore, we found that GW treatment significantly reduced expression of chemokines that may exacerbate neutrophil- and macrophage-mediated cell rejection. These data suggest that use of PPARγ inhibitors during the preparation of hMSCs may enhance the capacity of the cells for osteogenic cytotherapy, whereas adenine analogs such as BIO can adversely affect the viability of hMSC preparations in vitro and in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20150512</pmid><doi>10.1073/pnas.0914360107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4147-4152
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20150512
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Alkaline Phosphatase - metabolism
beta Catenin - metabolism
Biocompatible Materials
Biological Sciences
Blood vessels
Bone formation
Bone marrow
Bones
Cell cycle
Cultured cells
Enzyme Inhibitors - pharmacology
Gene Expression Profiling
Genes
Glycogen Synthase Kinase 3 - antagonists & inhibitors
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Humans
Indoles - pharmacology
Intercellular Signaling Peptides and Proteins - metabolism
Lesions
Lipogenesis
Mesenchymal stem cells
Multipotent Stem Cells - drug effects
Multipotent Stem Cells - enzymology
Multipotent Stem Cells - metabolism
Osteoblasts
Osteogenesis - drug effects
Osteoprotegerin - metabolism
Oximes - pharmacology
Pharmaceuticals
PPAR gamma - antagonists & inhibitors
Signal transduction
Signal Transduction - drug effects
Stem cells
Stromal Cells - drug effects
Stromal Cells - enzymology
Stromal Cells - metabolism
Tissue Engineering
Wnt Proteins - metabolism
title Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmaceutical%20modulation%20of%20canonical%20Wnt%20signaling%20in%20multipotent%20stromal%20cells%20for%20improved%20osteoinductive%20therapy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Krause,%20Ulf&rft.date=2010-03-02&rft.volume=107&rft.issue=9&rft.spage=4147&rft.epage=4152&rft.pages=4147-4152&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914360107&rft_dat=%3Cjstor_pubme%3E40537093%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201430827&rft_id=info:pmid/20150512&rft_jstor_id=40537093&rfr_iscdi=true