Mechanical amplification by hair cells in the semicircular canals
Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (8), p.3864-3869 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3869 |
---|---|
container_issue | 8 |
container_start_page | 3864 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Rabbitt, Richard D Boyle, Richard Highstein, Stephen M |
description | Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s). |
doi_str_mv | 10.1073/pnas.0906765107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20133682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537377</jstor_id><sourcerecordid>40537377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi0EokvhzAmIuHBKO35mfEGqKl5SKw6UszXxOl2v8ljsBKn_PYm2bB-Xnsby95vPnvkYe8vhhEMlT3c95ROwYCqj54tnbMXB8tIoC8_ZCkBUJSqhjtirnLcAYDXCS3YkgEtpUKzY2WXwG-qjp7agbtfGZj6OceiL-qbYUEyFD22bi9gX4yYUOXTRx-SnlmaFemrza_aimUt4c1uP2dXXL1fn38uLn99-nJ9dlF4LGEsLWAdJQkFAjaFGE9YkBFW-VsZqHgQh8qYmSxLQNxb12nLTAKIkj_KYfd7b7qa6C2sf-jFR63YpdpRu3EDRPVT6uHHXw18nUIGyajb4dGuQhj9TyKPrYl6Goz4MU3aVMoCGS_40uewOpdUz-fERuR2mtGzFzStWQlZaztDpHvJpyDmF5vBpDm5J0S0pursU547392c98P9juwcsnXd2lUMn0SzDvtsD2zwO6UAo0LKS1fLCh73e0ODoOsXsfv9a7IEjoLBC_gM6jLUR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423753</pqid></control><display><type>article</type><title>Mechanical amplification by hair cells in the semicircular canals</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</creator><creatorcontrib>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</creatorcontrib><description>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0906765107</identifier><identifier>PMID: 20133682</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angular velocity ; Animals ; Batrachoidiformes - physiology ; Biological Sciences ; Brain ; Cells ; Cochlea ; Contrapuntal motion ; Ears & hearing ; Hair ; Hair cells ; Hair Cells, Ampulla - physiology ; Mechanotransduction, Cellular ; Motion ; Motors ; Neuroscience ; Nonlinearity ; Opsanus tau ; Physiological stimulation ; Semicircular canals ; Semicircular Canals - cytology ; Sensory perception ; Teleostei</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3864-3869</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</citedby><cites>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabbitt, Richard D</creatorcontrib><creatorcontrib>Boyle, Richard</creatorcontrib><creatorcontrib>Highstein, Stephen M</creatorcontrib><title>Mechanical amplification by hair cells in the semicircular canals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</description><subject>Angular velocity</subject><subject>Animals</subject><subject>Batrachoidiformes - physiology</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cells</subject><subject>Cochlea</subject><subject>Contrapuntal motion</subject><subject>Ears & hearing</subject><subject>Hair</subject><subject>Hair cells</subject><subject>Hair Cells, Ampulla - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Motion</subject><subject>Motors</subject><subject>Neuroscience</subject><subject>Nonlinearity</subject><subject>Opsanus tau</subject><subject>Physiological stimulation</subject><subject>Semicircular canals</subject><subject>Semicircular Canals - cytology</subject><subject>Sensory perception</subject><subject>Teleostei</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctv1DAQxi0EokvhzAmIuHBKO35mfEGqKl5SKw6UszXxOl2v8ljsBKn_PYm2bB-Xnsby95vPnvkYe8vhhEMlT3c95ROwYCqj54tnbMXB8tIoC8_ZCkBUJSqhjtirnLcAYDXCS3YkgEtpUKzY2WXwG-qjp7agbtfGZj6OceiL-qbYUEyFD22bi9gX4yYUOXTRx-SnlmaFemrza_aimUt4c1uP2dXXL1fn38uLn99-nJ9dlF4LGEsLWAdJQkFAjaFGE9YkBFW-VsZqHgQh8qYmSxLQNxb12nLTAKIkj_KYfd7b7qa6C2sf-jFR63YpdpRu3EDRPVT6uHHXw18nUIGyajb4dGuQhj9TyKPrYl6Goz4MU3aVMoCGS_40uewOpdUz-fERuR2mtGzFzStWQlZaztDpHvJpyDmF5vBpDm5J0S0pursU547392c98P9juwcsnXd2lUMn0SzDvtsD2zwO6UAo0LKS1fLCh73e0ODoOsXsfv9a7IEjoLBC_gM6jLUR</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Rabbitt, Richard D</creator><creator>Boyle, Richard</creator><creator>Highstein, Stephen M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100223</creationdate><title>Mechanical amplification by hair cells in the semicircular canals</title><author>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angular velocity</topic><topic>Animals</topic><topic>Batrachoidiformes - physiology</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cells</topic><topic>Cochlea</topic><topic>Contrapuntal motion</topic><topic>Ears & hearing</topic><topic>Hair</topic><topic>Hair cells</topic><topic>Hair Cells, Ampulla - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Motion</topic><topic>Motors</topic><topic>Neuroscience</topic><topic>Nonlinearity</topic><topic>Opsanus tau</topic><topic>Physiological stimulation</topic><topic>Semicircular canals</topic><topic>Semicircular Canals - cytology</topic><topic>Sensory perception</topic><topic>Teleostei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabbitt, Richard D</creatorcontrib><creatorcontrib>Boyle, Richard</creatorcontrib><creatorcontrib>Highstein, Stephen M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabbitt, Richard D</au><au>Boyle, Richard</au><au>Highstein, Stephen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical amplification by hair cells in the semicircular canals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>107</volume><issue>8</issue><spage>3864</spage><epage>3869</epage><pages>3864-3869</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133682</pmid><doi>10.1073/pnas.0906765107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3864-3869 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_20133682 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Angular velocity Animals Batrachoidiformes - physiology Biological Sciences Brain Cells Cochlea Contrapuntal motion Ears & hearing Hair Hair cells Hair Cells, Ampulla - physiology Mechanotransduction, Cellular Motion Motors Neuroscience Nonlinearity Opsanus tau Physiological stimulation Semicircular canals Semicircular Canals - cytology Sensory perception Teleostei |
title | Mechanical amplification by hair cells in the semicircular canals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20amplification%20by%20hair%20cells%20in%20the%20semicircular%20canals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rabbitt,%20Richard%20D&rft.date=2010-02-23&rft.volume=107&rft.issue=8&rft.spage=3864&rft.epage=3869&rft.pages=3864-3869&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0906765107&rft_dat=%3Cjstor_pubme%3E40537377%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201423753&rft_id=info:pmid/20133682&rft_jstor_id=40537377&rfr_iscdi=true |