Mechanical amplification by hair cells in the semicircular canals

Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (8), p.3864-3869
Hauptverfasser: Rabbitt, Richard D, Boyle, Richard, Highstein, Stephen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3869
container_issue 8
container_start_page 3864
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Rabbitt, Richard D
Boyle, Richard
Highstein, Stephen M
description Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).
doi_str_mv 10.1073/pnas.0906765107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20133682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537377</jstor_id><sourcerecordid>40537377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</originalsourceid><addsrcrecordid>eNqFkctv1DAQxi0EokvhzAmIuHBKO35mfEGqKl5SKw6UszXxOl2v8ljsBKn_PYm2bB-Xnsby95vPnvkYe8vhhEMlT3c95ROwYCqj54tnbMXB8tIoC8_ZCkBUJSqhjtirnLcAYDXCS3YkgEtpUKzY2WXwG-qjp7agbtfGZj6OceiL-qbYUEyFD22bi9gX4yYUOXTRx-SnlmaFemrza_aimUt4c1uP2dXXL1fn38uLn99-nJ9dlF4LGEsLWAdJQkFAjaFGE9YkBFW-VsZqHgQh8qYmSxLQNxb12nLTAKIkj_KYfd7b7qa6C2sf-jFR63YpdpRu3EDRPVT6uHHXw18nUIGyajb4dGuQhj9TyKPrYl6Goz4MU3aVMoCGS_40uewOpdUz-fERuR2mtGzFzStWQlZaztDpHvJpyDmF5vBpDm5J0S0pursU547392c98P9juwcsnXd2lUMn0SzDvtsD2zwO6UAo0LKS1fLCh73e0ODoOsXsfv9a7IEjoLBC_gM6jLUR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423753</pqid></control><display><type>article</type><title>Mechanical amplification by hair cells in the semicircular canals</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</creator><creatorcontrib>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</creatorcontrib><description>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0906765107</identifier><identifier>PMID: 20133682</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Angular velocity ; Animals ; Batrachoidiformes - physiology ; Biological Sciences ; Brain ; Cells ; Cochlea ; Contrapuntal motion ; Ears &amp; hearing ; Hair ; Hair cells ; Hair Cells, Ampulla - physiology ; Mechanotransduction, Cellular ; Motion ; Motors ; Neuroscience ; Nonlinearity ; Opsanus tau ; Physiological stimulation ; Semicircular canals ; Semicircular Canals - cytology ; Sensory perception ; Teleostei</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3864-3869</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</citedby><cites>FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabbitt, Richard D</creatorcontrib><creatorcontrib>Boyle, Richard</creatorcontrib><creatorcontrib>Highstein, Stephen M</creatorcontrib><title>Mechanical amplification by hair cells in the semicircular canals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</description><subject>Angular velocity</subject><subject>Animals</subject><subject>Batrachoidiformes - physiology</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cells</subject><subject>Cochlea</subject><subject>Contrapuntal motion</subject><subject>Ears &amp; hearing</subject><subject>Hair</subject><subject>Hair cells</subject><subject>Hair Cells, Ampulla - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Motion</subject><subject>Motors</subject><subject>Neuroscience</subject><subject>Nonlinearity</subject><subject>Opsanus tau</subject><subject>Physiological stimulation</subject><subject>Semicircular canals</subject><subject>Semicircular Canals - cytology</subject><subject>Sensory perception</subject><subject>Teleostei</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctv1DAQxi0EokvhzAmIuHBKO35mfEGqKl5SKw6UszXxOl2v8ljsBKn_PYm2bB-Xnsby95vPnvkYe8vhhEMlT3c95ROwYCqj54tnbMXB8tIoC8_ZCkBUJSqhjtirnLcAYDXCS3YkgEtpUKzY2WXwG-qjp7agbtfGZj6OceiL-qbYUEyFD22bi9gX4yYUOXTRx-SnlmaFemrza_aimUt4c1uP2dXXL1fn38uLn99-nJ9dlF4LGEsLWAdJQkFAjaFGE9YkBFW-VsZqHgQh8qYmSxLQNxb12nLTAKIkj_KYfd7b7qa6C2sf-jFR63YpdpRu3EDRPVT6uHHXw18nUIGyajb4dGuQhj9TyKPrYl6Goz4MU3aVMoCGS_40uewOpdUz-fERuR2mtGzFzStWQlZaztDpHvJpyDmF5vBpDm5J0S0pursU547392c98P9juwcsnXd2lUMn0SzDvtsD2zwO6UAo0LKS1fLCh73e0ODoOsXsfv9a7IEjoLBC_gM6jLUR</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Rabbitt, Richard D</creator><creator>Boyle, Richard</creator><creator>Highstein, Stephen M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100223</creationdate><title>Mechanical amplification by hair cells in the semicircular canals</title><author>Rabbitt, Richard D ; Boyle, Richard ; Highstein, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-908be3a240e858eb86eda22a7cb46951e2a881fba9a308cf985d916f0883ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angular velocity</topic><topic>Animals</topic><topic>Batrachoidiformes - physiology</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cells</topic><topic>Cochlea</topic><topic>Contrapuntal motion</topic><topic>Ears &amp; hearing</topic><topic>Hair</topic><topic>Hair cells</topic><topic>Hair Cells, Ampulla - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Motion</topic><topic>Motors</topic><topic>Neuroscience</topic><topic>Nonlinearity</topic><topic>Opsanus tau</topic><topic>Physiological stimulation</topic><topic>Semicircular canals</topic><topic>Semicircular Canals - cytology</topic><topic>Sensory perception</topic><topic>Teleostei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabbitt, Richard D</creatorcontrib><creatorcontrib>Boyle, Richard</creatorcontrib><creatorcontrib>Highstein, Stephen M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabbitt, Richard D</au><au>Boyle, Richard</au><au>Highstein, Stephen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical amplification by hair cells in the semicircular canals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>107</volume><issue>8</issue><spage>3864</spage><epage>3869</epage><pages>3864-3869</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ~97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ~5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133682</pmid><doi>10.1073/pnas.0906765107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (8), p.3864-3869
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20133682
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angular velocity
Animals
Batrachoidiformes - physiology
Biological Sciences
Brain
Cells
Cochlea
Contrapuntal motion
Ears & hearing
Hair
Hair cells
Hair Cells, Ampulla - physiology
Mechanotransduction, Cellular
Motion
Motors
Neuroscience
Nonlinearity
Opsanus tau
Physiological stimulation
Semicircular canals
Semicircular Canals - cytology
Sensory perception
Teleostei
title Mechanical amplification by hair cells in the semicircular canals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20amplification%20by%20hair%20cells%20in%20the%20semicircular%20canals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rabbitt,%20Richard%20D&rft.date=2010-02-23&rft.volume=107&rft.issue=8&rft.spage=3864&rft.epage=3869&rft.pages=3864-3869&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0906765107&rft_dat=%3Cjstor_pubme%3E40537377%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201423753&rft_id=info:pmid/20133682&rft_jstor_id=40537377&rfr_iscdi=true