Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes

We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2010-02, Vol.32 (2), p.348-363
Hauptverfasser: Marks, T.K., Hershey, J.R., Movellan, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 2
container_start_page 348
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 32
creator Marks, T.K.
Hershey, J.R.
Movellan, J.R.
description We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.
doi_str_mv 10.1109/TPAMI.2008.278
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_20075463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685900</ieee_id><sourcerecordid>733688965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</originalsourceid><addsrcrecordid>eNp90c9rFDEUwPEgFbutXr0IMghFD8768nMyx2WrtdDiHrbn8CaTkamzkzZvB-x_36y7VvDQUwjvkwfhy9hbDnPOof6yXi2uL-cCwM5FZV-wGa9lXUot6yM2A25Eaa2wx-yE6BaAKw3yFTvOvtLKyBlbrRP6X_34s7iO2z6On4vz0MW0wf0Fx7ZYh9_bKYXihnZsGce23w1xGB6KC5yIehyLVYo-EAV6zV52OFB4czhP2c23r-vl9_Lqx8XlcnFVeqXUtgwabddoK1F7sNDKVkvjDa8qpY0QYBtRNxUoq5SvGqEQAnTedIJbE9CgPGUf93vvUryfAm3dpicfhgHHECdylZTG2troLD89K7mpuFCSa57ph__obZxS_io5q41SVmiR0XyPfIpEKXTuLvUbTA-Og9tFcX-iuF0Ul6PkB-8PW6dmE9on_rdCBmcHgORx6BKOvqd_TqhaaAXZvdu7PoTwNFbG6hpAPgKH2Zsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856448252</pqid></control><display><type>article</type><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</creator><creatorcontrib>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</creatorcontrib><description>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2008.278</identifier><identifier>PMID: 20075463</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer vision ; Deformable models ; Exact sciences and technology ; Face - anatomy &amp; histology ; face tracking ; Filtering ; Gaussian processes ; generative models ; Humans ; Image motion analysis ; Image Processing, Computer-Assisted - methods ; Inference ; Inference algorithms ; motion ; Movement - physiology ; Normal Distribution ; Optical filters ; Optimization ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; shape ; Stochastic Processes ; Studies ; Surface layer ; Texture ; Three dimensional ; Tracking ; video analysis ; Video data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-02, Vol.32 (2), p.348-363</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</citedby><cites>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22492540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20075463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Hershey, J.R.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy &amp; histology</subject><subject>face tracking</subject><subject>Filtering</subject><subject>Gaussian processes</subject><subject>generative models</subject><subject>Humans</subject><subject>Image motion analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Inference</subject><subject>Inference algorithms</subject><subject>motion</subject><subject>Movement - physiology</subject><subject>Normal Distribution</subject><subject>Optical filters</subject><subject>Optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>shape</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Three dimensional</subject><subject>Tracking</subject><subject>video analysis</subject><subject>Video data</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUwPEgFbutXr0IMghFD8768nMyx2WrtdDiHrbn8CaTkamzkzZvB-x_36y7VvDQUwjvkwfhy9hbDnPOof6yXi2uL-cCwM5FZV-wGa9lXUot6yM2A25Eaa2wx-yE6BaAKw3yFTvOvtLKyBlbrRP6X_34s7iO2z6On4vz0MW0wf0Fx7ZYh9_bKYXihnZsGce23w1xGB6KC5yIehyLVYo-EAV6zV52OFB4czhP2c23r-vl9_Lqx8XlcnFVeqXUtgwabddoK1F7sNDKVkvjDa8qpY0QYBtRNxUoq5SvGqEQAnTedIJbE9CgPGUf93vvUryfAm3dpicfhgHHECdylZTG2troLD89K7mpuFCSa57ph__obZxS_io5q41SVmiR0XyPfIpEKXTuLvUbTA-Og9tFcX-iuF0Ul6PkB-8PW6dmE9on_rdCBmcHgORx6BKOvqd_TqhaaAXZvdu7PoTwNFbG6hpAPgKH2Zsn</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Marks, T.K.</creator><creator>Hershey, J.R.</creator><creator>Movellan, J.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><author>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy &amp; histology</topic><topic>face tracking</topic><topic>Filtering</topic><topic>Gaussian processes</topic><topic>generative models</topic><topic>Humans</topic><topic>Image motion analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Inference</topic><topic>Inference algorithms</topic><topic>motion</topic><topic>Movement - physiology</topic><topic>Normal Distribution</topic><topic>Optical filters</topic><topic>Optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>shape</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Three dimensional</topic><topic>Tracking</topic><topic>video analysis</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Hershey, J.R.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marks, T.K.</au><au>Hershey, J.R.</au><au>Movellan, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>32</volume><issue>2</issue><spage>348</spage><epage>363</epage><pages>348-363</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>20075463</pmid><doi>10.1109/TPAMI.2008.278</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2010-02, Vol.32 (2), p.348-363
issn 0162-8828
1939-3539
language eng
recordid cdi_pubmed_primary_20075463
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer vision
Deformable models
Exact sciences and technology
Face - anatomy & histology
face tracking
Filtering
Gaussian processes
generative models
Humans
Image motion analysis
Image Processing, Computer-Assisted - methods
Inference
Inference algorithms
motion
Movement - physiology
Normal Distribution
Optical filters
Optimization
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Robustness
shape
Stochastic Processes
Studies
Surface layer
Texture
Three dimensional
Tracking
video analysis
Video data
title Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Motion,%20Deformation,%20and%20Texture%20Using%20Conditionally%20Gaussian%20Processes&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Marks,%20T.K.&rft.date=2010-02-01&rft.volume=32&rft.issue=2&rft.spage=348&rft.epage=363&rft.pages=348-363&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2008.278&rft_dat=%3Cproquest_RIE%3E733688965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856448252&rft_id=info:pmid/20075463&rft_ieee_id=4685900&rfr_iscdi=true