Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes
We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2010-02, Vol.32 (2), p.348-363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 2 |
container_start_page | 348 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 32 |
creator | Marks, T.K. Hershey, J.R. Movellan, J.R. |
description | We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches. |
doi_str_mv | 10.1109/TPAMI.2008.278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_20075463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685900</ieee_id><sourcerecordid>733688965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</originalsourceid><addsrcrecordid>eNp90c9rFDEUwPEgFbutXr0IMghFD8768nMyx2WrtdDiHrbn8CaTkamzkzZvB-x_36y7VvDQUwjvkwfhy9hbDnPOof6yXi2uL-cCwM5FZV-wGa9lXUot6yM2A25Eaa2wx-yE6BaAKw3yFTvOvtLKyBlbrRP6X_34s7iO2z6On4vz0MW0wf0Fx7ZYh9_bKYXihnZsGce23w1xGB6KC5yIehyLVYo-EAV6zV52OFB4czhP2c23r-vl9_Lqx8XlcnFVeqXUtgwabddoK1F7sNDKVkvjDa8qpY0QYBtRNxUoq5SvGqEQAnTedIJbE9CgPGUf93vvUryfAm3dpicfhgHHECdylZTG2troLD89K7mpuFCSa57ph__obZxS_io5q41SVmiR0XyPfIpEKXTuLvUbTA-Og9tFcX-iuF0Ul6PkB-8PW6dmE9on_rdCBmcHgORx6BKOvqd_TqhaaAXZvdu7PoTwNFbG6hpAPgKH2Zsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856448252</pqid></control><display><type>article</type><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</creator><creatorcontrib>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</creatorcontrib><description>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2008.278</identifier><identifier>PMID: 20075463</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer vision ; Deformable models ; Exact sciences and technology ; Face - anatomy & histology ; face tracking ; Filtering ; Gaussian processes ; generative models ; Humans ; Image motion analysis ; Image Processing, Computer-Assisted - methods ; Inference ; Inference algorithms ; motion ; Movement - physiology ; Normal Distribution ; Optical filters ; Optimization ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; shape ; Stochastic Processes ; Studies ; Surface layer ; Texture ; Three dimensional ; Tracking ; video analysis ; Video data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-02, Vol.32 (2), p.348-363</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</citedby><cites>FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20075463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Hershey, J.R.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy & histology</subject><subject>face tracking</subject><subject>Filtering</subject><subject>Gaussian processes</subject><subject>generative models</subject><subject>Humans</subject><subject>Image motion analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Inference</subject><subject>Inference algorithms</subject><subject>motion</subject><subject>Movement - physiology</subject><subject>Normal Distribution</subject><subject>Optical filters</subject><subject>Optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>shape</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Three dimensional</subject><subject>Tracking</subject><subject>video analysis</subject><subject>Video data</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUwPEgFbutXr0IMghFD8768nMyx2WrtdDiHrbn8CaTkamzkzZvB-x_36y7VvDQUwjvkwfhy9hbDnPOof6yXi2uL-cCwM5FZV-wGa9lXUot6yM2A25Eaa2wx-yE6BaAKw3yFTvOvtLKyBlbrRP6X_34s7iO2z6On4vz0MW0wf0Fx7ZYh9_bKYXihnZsGce23w1xGB6KC5yIehyLVYo-EAV6zV52OFB4czhP2c23r-vl9_Lqx8XlcnFVeqXUtgwabddoK1F7sNDKVkvjDa8qpY0QYBtRNxUoq5SvGqEQAnTedIJbE9CgPGUf93vvUryfAm3dpicfhgHHECdylZTG2troLD89K7mpuFCSa57ph__obZxS_io5q41SVmiR0XyPfIpEKXTuLvUbTA-Og9tFcX-iuF0Ul6PkB-8PW6dmE9on_rdCBmcHgORx6BKOvqd_TqhaaAXZvdu7PoTwNFbG6hpAPgKH2Zsn</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Marks, T.K.</creator><creator>Hershey, J.R.</creator><creator>Movellan, J.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</title><author>Marks, T.K. ; Hershey, J.R. ; Movellan, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e5a8fb583a5c080d3d536c61774562208b29b704844c7b24a0e0fc6f2186ea6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy & histology</topic><topic>face tracking</topic><topic>Filtering</topic><topic>Gaussian processes</topic><topic>generative models</topic><topic>Humans</topic><topic>Image motion analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Inference</topic><topic>Inference algorithms</topic><topic>motion</topic><topic>Movement - physiology</topic><topic>Normal Distribution</topic><topic>Optical filters</topic><topic>Optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>shape</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Three dimensional</topic><topic>Tracking</topic><topic>video analysis</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marks, T.K.</creatorcontrib><creatorcontrib>Hershey, J.R.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marks, T.K.</au><au>Hershey, J.R.</au><au>Movellan, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>32</volume><issue>2</issue><spage>348</spage><epage>363</epage><pages>348-363</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem. The optimal solution to this problem reveals a new space of computer vision algorithms, of which classic approaches such as optic flow and template matching are special cases that are optimal only under special circumstances. We evaluate G-flow on the problem of tracking facial expressions and head motion in 3D from single-camera video. Previously, the lack of realistic video data with ground truth nonrigid position information has hampered the rigorous evaluation of nonrigid tracking. We introduce a practical method of obtaining such ground truth data and present a new face video data set that was created using this technique. Results on this data set show that G-flow is much more robust and accurate than current deterministic optic-flow-based approaches.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>20075463</pmid><doi>10.1109/TPAMI.2008.278</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2010-02, Vol.32 (2), p.348-363 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pubmed_primary_20075463 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer vision Deformable models Exact sciences and technology Face - anatomy & histology face tracking Filtering Gaussian processes generative models Humans Image motion analysis Image Processing, Computer-Assisted - methods Inference Inference algorithms motion Movement - physiology Normal Distribution Optical filters Optimization Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Robustness shape Stochastic Processes Studies Surface layer Texture Three dimensional Tracking video analysis Video data |
title | Tracking Motion, Deformation, and Texture Using Conditionally Gaussian Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Motion,%20Deformation,%20and%20Texture%20Using%20Conditionally%20Gaussian%20Processes&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Marks,%20T.K.&rft.date=2010-02-01&rft.volume=32&rft.issue=2&rft.spage=348&rft.epage=363&rft.pages=348-363&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2008.278&rft_dat=%3Cproquest_RIE%3E733688965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856448252&rft_id=info:pmid/20075463&rft_ieee_id=4685900&rfr_iscdi=true |