On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications

Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the Internatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2010-03, Vol.14 (2), p.309-318
Hauptverfasser: Frantzidis, C.A., Bratsas, C., Klados, M.A., Konstantinidis, E., Lithari, C.D., Vivas, A.B., Papadelis, C.L., Kaldoudi, E., Pappas, C., Bamidis, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 309
container_title IEEE journal of biomedical and health informatics
container_volume 14
creator Frantzidis, C.A.
Bratsas, C.
Klados, M.A.
Konstantinidis, E.
Lithari, C.D.
Vivas, A.B.
Papadelis, C.L.
Kaldoudi, E.
Pappas, C.
Bamidis, P.D.
description Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the International Affective Picture System (IAPS). Biosignals are multichannel recordings from both the central and the autonomic nervous systems. Following the bidirectional emotion theory model, IAPS pictures are rated along two dimensions, namely, their valence and arousal. Following this model, biosignals in this paper are initially differentiated according to their valence dimension by means of a data mining approach, which is the C4.5 decision tree algorithm. Then, the valence and the gender information serve as an input to a Mahalanobis distance classifier, which dissects the data into high and low arousing. Results are described in Extensible Markup Language (XML) format, thereby accounting for platform independency, easy interconnectivity, and information exchange. The average recognition (success) rate was 77.68% for the discrimination of four emotional states, differing both in their arousal and valence dimension. It is, therefore, envisaged that the proposed approach holds promise for the efficient discrimination of negative and positive emotions, and it is hereby discussed how future developments may be steered to serve for affective healthcare applications, such as the monitoring of the elderly or chronically ill people.
doi_str_mv 10.1109/TITB.2009.2038481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_20064762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5373931</ieee_id><sourcerecordid>734030054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5ccfa0dd0203b91e742bd6617109c1169300bef0e00019f42280363dead2f8d33</originalsourceid><addsrcrecordid>eNqFkc-O0zAQxiMEYpeFB0BIyBIHTlnGsRMn3NpS2EqLlkOBY-Q649ZLGndtZxHPwssyUcseuHCxRzO_-aPvy7KXHC45h-bderWeXxYADT2iljV_lJ3zsqxzAFE8phjqJldK8bPsWYy3AFyWXDzNzqinkqoqzrPfNwNLO2SLXsforDM6OT8wb9ly76dQ92zufHRbiiJb3vsf2LHvO9cj--bwpxu2bGYtmuTukX1xJo0B43s2G9hqSLgNOhH_QSedf3YD0flcR8rMDofgtdkx6wO7Qt2nndEBp3x_OiI-z55YWoovTv9F9vXjcr24yq9vPq0Ws-vcSFmlvDTGaug6IBE2DUcli01XVVyRRIbzqhEAG7SAQAI0VhZFDaISHequsHUnxEX29jiXTrobMaZ276LBvtcD-jG2itYUZcXh_6SQQNtKSeSbf8hbP4ZJw5ZDobiUUCqi-JEywccY0LaH4PY6_CKonSxuJ4vbyeL2ZDH1vD5NHjd77B46_npKwKsj4BDxoVwKJRrBxR9-9Kpp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027144057</pqid></control><display><type>article</type><title>On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Frantzidis, C.A. ; Bratsas, C. ; Klados, M.A. ; Konstantinidis, E. ; Lithari, C.D. ; Vivas, A.B. ; Papadelis, C.L. ; Kaldoudi, E. ; Pappas, C. ; Bamidis, P.D.</creator><creatorcontrib>Frantzidis, C.A. ; Bratsas, C. ; Klados, M.A. ; Konstantinidis, E. ; Lithari, C.D. ; Vivas, A.B. ; Papadelis, C.L. ; Kaldoudi, E. ; Pappas, C. ; Bamidis, P.D.</creatorcontrib><description>Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the International Affective Picture System (IAPS). Biosignals are multichannel recordings from both the central and the autonomic nervous systems. Following the bidirectional emotion theory model, IAPS pictures are rated along two dimensions, namely, their valence and arousal. Following this model, biosignals in this paper are initially differentiated according to their valence dimension by means of a data mining approach, which is the C4.5 decision tree algorithm. Then, the valence and the gender information serve as an input to a Mahalanobis distance classifier, which dissects the data into high and low arousing. Results are described in Extensible Markup Language (XML) format, thereby accounting for platform independency, easy interconnectivity, and information exchange. The average recognition (success) rate was 77.68% for the discrimination of four emotional states, differing both in their arousal and valence dimension. It is, therefore, envisaged that the proposed approach holds promise for the efficient discrimination of negative and positive emotions, and it is hereby discussed how future developments may be steered to serve for affective healthcare applications, such as the monitoring of the elderly or chronically ill people.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2009.2038481</identifier><identifier>PMID: 20064762</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Affective computing ; Algorithms ; Autonomic nervous system ; Autonomic Nervous System - physiology ; Biomedical monitoring ; Central Nervous System - physiology ; Data Mining ; decision tree ; Decision trees ; EEG ; Electroencephalography ; Emotion recognition ; emotion theory ; Emotions ; Emotions - physiology ; evoked potential response ; Evoked Potentials - physiology ; Female ; Galvanic Skin Response ; healthcare remote monitoring ; Humans ; International Affective Picture System (IAPS) ; LAN interconnection ; Mahalanobis distance ; Male ; Medical services ; Monitoring, Physiologic - methods ; Neuroscience ; Pattern Recognition, Automated ; Recognition (Psychology) - physiology ; Reproducibility of Results ; Robustness ; Signal Processing, Computer-Assisted ; Studies ; XML</subject><ispartof>IEEE journal of biomedical and health informatics, 2010-03, Vol.14 (2), p.309-318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5ccfa0dd0203b91e742bd6617109c1169300bef0e00019f42280363dead2f8d33</citedby><cites>FETCH-LOGICAL-c446t-5ccfa0dd0203b91e742bd6617109c1169300bef0e00019f42280363dead2f8d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5373931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5373931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20064762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frantzidis, C.A.</creatorcontrib><creatorcontrib>Bratsas, C.</creatorcontrib><creatorcontrib>Klados, M.A.</creatorcontrib><creatorcontrib>Konstantinidis, E.</creatorcontrib><creatorcontrib>Lithari, C.D.</creatorcontrib><creatorcontrib>Vivas, A.B.</creatorcontrib><creatorcontrib>Papadelis, C.L.</creatorcontrib><creatorcontrib>Kaldoudi, E.</creatorcontrib><creatorcontrib>Pappas, C.</creatorcontrib><creatorcontrib>Bamidis, P.D.</creatorcontrib><title>On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the International Affective Picture System (IAPS). Biosignals are multichannel recordings from both the central and the autonomic nervous systems. Following the bidirectional emotion theory model, IAPS pictures are rated along two dimensions, namely, their valence and arousal. Following this model, biosignals in this paper are initially differentiated according to their valence dimension by means of a data mining approach, which is the C4.5 decision tree algorithm. Then, the valence and the gender information serve as an input to a Mahalanobis distance classifier, which dissects the data into high and low arousing. Results are described in Extensible Markup Language (XML) format, thereby accounting for platform independency, easy interconnectivity, and information exchange. The average recognition (success) rate was 77.68% for the discrimination of four emotional states, differing both in their arousal and valence dimension. It is, therefore, envisaged that the proposed approach holds promise for the efficient discrimination of negative and positive emotions, and it is hereby discussed how future developments may be steered to serve for affective healthcare applications, such as the monitoring of the elderly or chronically ill people.</description><subject>Adult</subject><subject>Affective computing</subject><subject>Algorithms</subject><subject>Autonomic nervous system</subject><subject>Autonomic Nervous System - physiology</subject><subject>Biomedical monitoring</subject><subject>Central Nervous System - physiology</subject><subject>Data Mining</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Emotion recognition</subject><subject>emotion theory</subject><subject>Emotions</subject><subject>Emotions - physiology</subject><subject>evoked potential response</subject><subject>Evoked Potentials - physiology</subject><subject>Female</subject><subject>Galvanic Skin Response</subject><subject>healthcare remote monitoring</subject><subject>Humans</subject><subject>International Affective Picture System (IAPS)</subject><subject>LAN interconnection</subject><subject>Mahalanobis distance</subject><subject>Male</subject><subject>Medical services</subject><subject>Monitoring, Physiologic - methods</subject><subject>Neuroscience</subject><subject>Pattern Recognition, Automated</subject><subject>Recognition (Psychology) - physiology</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Studies</subject><subject>XML</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc-O0zAQxiMEYpeFB0BIyBIHTlnGsRMn3NpS2EqLlkOBY-Q649ZLGndtZxHPwssyUcseuHCxRzO_-aPvy7KXHC45h-bderWeXxYADT2iljV_lJ3zsqxzAFE8phjqJldK8bPsWYy3AFyWXDzNzqinkqoqzrPfNwNLO2SLXsforDM6OT8wb9ly76dQ92zufHRbiiJb3vsf2LHvO9cj--bwpxu2bGYtmuTukX1xJo0B43s2G9hqSLgNOhH_QSedf3YD0flcR8rMDofgtdkx6wO7Qt2nndEBp3x_OiI-z55YWoovTv9F9vXjcr24yq9vPq0Ws-vcSFmlvDTGaug6IBE2DUcli01XVVyRRIbzqhEAG7SAQAI0VhZFDaISHequsHUnxEX29jiXTrobMaZ276LBvtcD-jG2itYUZcXh_6SQQNtKSeSbf8hbP4ZJw5ZDobiUUCqi-JEywccY0LaH4PY6_CKonSxuJ4vbyeL2ZDH1vD5NHjd77B46_npKwKsj4BDxoVwKJRrBxR9-9Kpp</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Frantzidis, C.A.</creator><creator>Bratsas, C.</creator><creator>Klados, M.A.</creator><creator>Konstantinidis, E.</creator><creator>Lithari, C.D.</creator><creator>Vivas, A.B.</creator><creator>Papadelis, C.L.</creator><creator>Kaldoudi, E.</creator><creator>Pappas, C.</creator><creator>Bamidis, P.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201003</creationdate><title>On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications</title><author>Frantzidis, C.A. ; Bratsas, C. ; Klados, M.A. ; Konstantinidis, E. ; Lithari, C.D. ; Vivas, A.B. ; Papadelis, C.L. ; Kaldoudi, E. ; Pappas, C. ; Bamidis, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5ccfa0dd0203b91e742bd6617109c1169300bef0e00019f42280363dead2f8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Affective computing</topic><topic>Algorithms</topic><topic>Autonomic nervous system</topic><topic>Autonomic Nervous System - physiology</topic><topic>Biomedical monitoring</topic><topic>Central Nervous System - physiology</topic><topic>Data Mining</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Emotion recognition</topic><topic>emotion theory</topic><topic>Emotions</topic><topic>Emotions - physiology</topic><topic>evoked potential response</topic><topic>Evoked Potentials - physiology</topic><topic>Female</topic><topic>Galvanic Skin Response</topic><topic>healthcare remote monitoring</topic><topic>Humans</topic><topic>International Affective Picture System (IAPS)</topic><topic>LAN interconnection</topic><topic>Mahalanobis distance</topic><topic>Male</topic><topic>Medical services</topic><topic>Monitoring, Physiologic - methods</topic><topic>Neuroscience</topic><topic>Pattern Recognition, Automated</topic><topic>Recognition (Psychology) - physiology</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Studies</topic><topic>XML</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frantzidis, C.A.</creatorcontrib><creatorcontrib>Bratsas, C.</creatorcontrib><creatorcontrib>Klados, M.A.</creatorcontrib><creatorcontrib>Konstantinidis, E.</creatorcontrib><creatorcontrib>Lithari, C.D.</creatorcontrib><creatorcontrib>Vivas, A.B.</creatorcontrib><creatorcontrib>Papadelis, C.L.</creatorcontrib><creatorcontrib>Kaldoudi, E.</creatorcontrib><creatorcontrib>Pappas, C.</creatorcontrib><creatorcontrib>Bamidis, P.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Frantzidis, C.A.</au><au>Bratsas, C.</au><au>Klados, M.A.</au><au>Konstantinidis, E.</au><au>Lithari, C.D.</au><au>Vivas, A.B.</au><au>Papadelis, C.L.</au><au>Kaldoudi, E.</au><au>Pappas, C.</au><au>Bamidis, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2010-03</date><risdate>2010</risdate><volume>14</volume><issue>2</issue><spage>309</spage><epage>318</epage><pages>309-318</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Recent neuroscience findings demonstrate the fundamental role of emotion in the maintenance of physical and mental health. In the present study, a novel architecture is proposed for the robust discrimination of emotional physiological signals evoked upon viewing pictures selected from the International Affective Picture System (IAPS). Biosignals are multichannel recordings from both the central and the autonomic nervous systems. Following the bidirectional emotion theory model, IAPS pictures are rated along two dimensions, namely, their valence and arousal. Following this model, biosignals in this paper are initially differentiated according to their valence dimension by means of a data mining approach, which is the C4.5 decision tree algorithm. Then, the valence and the gender information serve as an input to a Mahalanobis distance classifier, which dissects the data into high and low arousing. Results are described in Extensible Markup Language (XML) format, thereby accounting for platform independency, easy interconnectivity, and information exchange. The average recognition (success) rate was 77.68% for the discrimination of four emotional states, differing both in their arousal and valence dimension. It is, therefore, envisaged that the proposed approach holds promise for the efficient discrimination of negative and positive emotions, and it is hereby discussed how future developments may be steered to serve for affective healthcare applications, such as the monitoring of the elderly or chronically ill people.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20064762</pmid><doi>10.1109/TITB.2009.2038481</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2010-03, Vol.14 (2), p.309-318
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_pubmed_primary_20064762
source IEEE Electronic Library (IEL)
subjects Adult
Affective computing
Algorithms
Autonomic nervous system
Autonomic Nervous System - physiology
Biomedical monitoring
Central Nervous System - physiology
Data Mining
decision tree
Decision trees
EEG
Electroencephalography
Emotion recognition
emotion theory
Emotions
Emotions - physiology
evoked potential response
Evoked Potentials - physiology
Female
Galvanic Skin Response
healthcare remote monitoring
Humans
International Affective Picture System (IAPS)
LAN interconnection
Mahalanobis distance
Male
Medical services
Monitoring, Physiologic - methods
Neuroscience
Pattern Recognition, Automated
Recognition (Psychology) - physiology
Reproducibility of Results
Robustness
Signal Processing, Computer-Assisted
Studies
XML
title On the Classification of Emotional Biosignals Evoked While Viewing Affective Pictures: An Integrated Data-Mining-Based Approach for Healthcare Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Classification%20of%20Emotional%20Biosignals%20Evoked%20While%20Viewing%20Affective%20Pictures:%20An%20Integrated%20Data-Mining-Based%20Approach%20for%20Healthcare%20Applications&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Frantzidis,%20C.A.&rft.date=2010-03&rft.volume=14&rft.issue=2&rft.spage=309&rft.epage=318&rft.pages=309-318&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2009.2038481&rft_dat=%3Cproquest_RIE%3E734030054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027144057&rft_id=info:pmid/20064762&rft_ieee_id=5373931&rfr_iscdi=true