Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity

An ultrasound-based method to locally assess the shear modulus of a medium is reported. The proposed approach is based on the application of an impulse acoustic radiation force to an inhomogeneity in the medium and subsequent monitoring of the spatio-temporal response. In our experimental studies, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2009-11, Vol.56 (11), p.2380-2387
Hauptverfasser: Karpiouk, A., Aglyamov, S., Ilinskii, Y., Zabolotskaya, E., Emelianov, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2387
container_issue 11
container_start_page 2380
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 56
creator Karpiouk, A.
Aglyamov, S.
Ilinskii, Y.
Zabolotskaya, E.
Emelianov, S.
description An ultrasound-based method to locally assess the shear modulus of a medium is reported. The proposed approach is based on the application of an impulse acoustic radiation force to an inhomogeneity in the medium and subsequent monitoring of the spatio-temporal response. In our experimental studies, a short pulse produced by a 1.5-MHz highly focused ultrasound transducer was used to initiate the motion of a rigid sphere embedded into an elastic medium. Another 25 MHz focused ultrasound transducer operating in pulse-echo mode was used to track the displacement of the sphere. The experiments were performed in gel phantoms with varying shear modulus to demonstrate the relationship between the displacement of the sphere and shear modulus of the surrounding medium. Because the magnitude of acoustic force applied to sphere depends on the acoustic material properties and, therefore, cannot be used to assess the absolute value of shear modulus, the temporal behavior of the displacement of the sphere was analyzed. The results of this study indicate that there is a strong correlation between the shear modulus of a medium and spatio-temporal characteristics of the motion of the rigid sphere embedded in this medium.
doi_str_mv 10.1109/TUFFC.2009.1326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_19942525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5306720</ieee_id><sourcerecordid>36362283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-2561e5babe235d30cb5479105dc7f3ad43c511882b5346d01421fb396e863a73</originalsourceid><addsrcrecordid>eNqFks2LFDEQxYMo7uzq2YMgQVg99Ww-OpnkIiyDo8KCl_Ec0un0TJbuzpjqLOx_b9oZxo-DnkJV_VLw6j2EXlGypJTom-23zWa9ZIToJeVMPkELKpiolBbiKVoQpUTFCSUX6BLgnhBa15o9RxdU65oVcIHgFsADDH6ccOww7L1NeIht7jPMjSkAZI8zhHGHcz8lCzGPLU62DXYKccRdTM5j66aZKLXFcNj7FJztSzdmmILDYdzHIe786MP0-AI962wP_uXpvULbzcft-nN19_XTl_XtXeUk01PFhKReNLbxjIuWE9eIeqUpEa1bddy2NXeCUqVYI3gt2yKO0a7hWnoluV3xK_ThuPaQm8G3rkhMtjeHFAabHk20wfw5GcPe7OKD4URoKkRZ8P60IMXv2cNkhgDO970dfdFllNJcMaJpId_9k-SSS8YU_y_IiovFPFLAt3-B9zGnsZzLKKGklrWaFd4cIZciQPLdWRwlZs6H-ZkPM-fDzPkoP978fpNf_CkQBbg-ARaKg12yowtw5hirNV3RunCvj1zw3p_HghO5YoT_AH5azYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858696487</pqid></control><display><type>article</type><title>Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity</title><source>IEEE Electronic Library (IEL)</source><creator>Karpiouk, A. ; Aglyamov, S. ; Ilinskii, Y. ; Zabolotskaya, E. ; Emelianov, S.</creator><creatorcontrib>Karpiouk, A. ; Aglyamov, S. ; Ilinskii, Y. ; Zabolotskaya, E. ; Emelianov, S.</creatorcontrib><description>An ultrasound-based method to locally assess the shear modulus of a medium is reported. The proposed approach is based on the application of an impulse acoustic radiation force to an inhomogeneity in the medium and subsequent monitoring of the spatio-temporal response. In our experimental studies, a short pulse produced by a 1.5-MHz highly focused ultrasound transducer was used to initiate the motion of a rigid sphere embedded into an elastic medium. Another 25 MHz focused ultrasound transducer operating in pulse-echo mode was used to track the displacement of the sphere. The experiments were performed in gel phantoms with varying shear modulus to demonstrate the relationship between the displacement of the sphere and shear modulus of the surrounding medium. Because the magnitude of acoustic force applied to sphere depends on the acoustic material properties and, therefore, cannot be used to assess the absolute value of shear modulus, the temporal behavior of the displacement of the sphere was analyzed. The results of this study indicate that there is a strong correlation between the shear modulus of a medium and spatio-temporal characteristics of the motion of the rigid sphere embedded in this medium.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2009.1326</identifier><identifier>PMID: 19942525</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic measurement ; Acoustic measurements ; Acoustic properties ; Acoustics ; Animals ; Anisotropy ; Computer Simulation ; Connective Tissue - physiology ; Displacement ; Displacement measurement ; Elastic Modulus - physiology ; Elasticity ; Elasticity Imaging Techniques - instrumentation ; Elasticity Imaging Techniques - methods ; Exact sciences and technology ; Force measurement ; Fundamental areas of phenomenology (including applications) ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; Inhomogeneity ; Mathematical models ; Mechanical factors ; Models, Biological ; Monitoring ; Nonlinear acoustics, macrosonics ; Phantoms, Imaging ; Physics ; Shear modulus ; Shear Strength - physiology ; Solids ; Stress, Mechanical ; Transducers ; Ultrasonic imaging ; Ultrasonic variables measurement ; Ultrasound ; Viscosity</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2009-11, Vol.56 (11), p.2380-2387</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-2561e5babe235d30cb5479105dc7f3ad43c511882b5346d01421fb396e863a73</citedby><cites>FETCH-LOGICAL-c629t-2561e5babe235d30cb5479105dc7f3ad43c511882b5346d01421fb396e863a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5306720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5306720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22491714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19942525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karpiouk, A.</creatorcontrib><creatorcontrib>Aglyamov, S.</creatorcontrib><creatorcontrib>Ilinskii, Y.</creatorcontrib><creatorcontrib>Zabolotskaya, E.</creatorcontrib><creatorcontrib>Emelianov, S.</creatorcontrib><title>Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>An ultrasound-based method to locally assess the shear modulus of a medium is reported. The proposed approach is based on the application of an impulse acoustic radiation force to an inhomogeneity in the medium and subsequent monitoring of the spatio-temporal response. In our experimental studies, a short pulse produced by a 1.5-MHz highly focused ultrasound transducer was used to initiate the motion of a rigid sphere embedded into an elastic medium. Another 25 MHz focused ultrasound transducer operating in pulse-echo mode was used to track the displacement of the sphere. The experiments were performed in gel phantoms with varying shear modulus to demonstrate the relationship between the displacement of the sphere and shear modulus of the surrounding medium. Because the magnitude of acoustic force applied to sphere depends on the acoustic material properties and, therefore, cannot be used to assess the absolute value of shear modulus, the temporal behavior of the displacement of the sphere was analyzed. The results of this study indicate that there is a strong correlation between the shear modulus of a medium and spatio-temporal characteristics of the motion of the rigid sphere embedded in this medium.</description><subject>Acoustic measurement</subject><subject>Acoustic measurements</subject><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Computer Simulation</subject><subject>Connective Tissue - physiology</subject><subject>Displacement</subject><subject>Displacement measurement</subject><subject>Elastic Modulus - physiology</subject><subject>Elasticity</subject><subject>Elasticity Imaging Techniques - instrumentation</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Exact sciences and technology</subject><subject>Force measurement</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Inhomogeneity</subject><subject>Mathematical models</subject><subject>Mechanical factors</subject><subject>Models, Biological</subject><subject>Monitoring</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Phantoms, Imaging</subject><subject>Physics</subject><subject>Shear modulus</subject><subject>Shear Strength - physiology</subject><subject>Solids</subject><subject>Stress, Mechanical</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasound</subject><subject>Viscosity</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFks2LFDEQxYMo7uzq2YMgQVg99Ww-OpnkIiyDo8KCl_Ec0un0TJbuzpjqLOx_b9oZxo-DnkJV_VLw6j2EXlGypJTom-23zWa9ZIToJeVMPkELKpiolBbiKVoQpUTFCSUX6BLgnhBa15o9RxdU65oVcIHgFsADDH6ccOww7L1NeIht7jPMjSkAZI8zhHGHcz8lCzGPLU62DXYKccRdTM5j66aZKLXFcNj7FJztSzdmmILDYdzHIe786MP0-AI962wP_uXpvULbzcft-nN19_XTl_XtXeUk01PFhKReNLbxjIuWE9eIeqUpEa1bddy2NXeCUqVYI3gt2yKO0a7hWnoluV3xK_ThuPaQm8G3rkhMtjeHFAabHk20wfw5GcPe7OKD4URoKkRZ8P60IMXv2cNkhgDO970dfdFllNJcMaJpId_9k-SSS8YU_y_IiovFPFLAt3-B9zGnsZzLKKGklrWaFd4cIZciQPLdWRwlZs6H-ZkPM-fDzPkoP978fpNf_CkQBbg-ARaKg12yowtw5hirNV3RunCvj1zw3p_HghO5YoT_AH5azYU</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Karpiouk, A.</creator><creator>Aglyamov, S.</creator><creator>Ilinskii, Y.</creator><creator>Zabolotskaya, E.</creator><creator>Emelianov, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity</title><author>Karpiouk, A. ; Aglyamov, S. ; Ilinskii, Y. ; Zabolotskaya, E. ; Emelianov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-2561e5babe235d30cb5479105dc7f3ad43c511882b5346d01421fb396e863a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic measurement</topic><topic>Acoustic measurements</topic><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Computer Simulation</topic><topic>Connective Tissue - physiology</topic><topic>Displacement</topic><topic>Displacement measurement</topic><topic>Elastic Modulus - physiology</topic><topic>Elasticity</topic><topic>Elasticity Imaging Techniques - instrumentation</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Exact sciences and technology</topic><topic>Force measurement</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Inhomogeneity</topic><topic>Mathematical models</topic><topic>Mechanical factors</topic><topic>Models, Biological</topic><topic>Monitoring</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Phantoms, Imaging</topic><topic>Physics</topic><topic>Shear modulus</topic><topic>Shear Strength - physiology</topic><topic>Solids</topic><topic>Stress, Mechanical</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasound</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpiouk, A.</creatorcontrib><creatorcontrib>Aglyamov, S.</creatorcontrib><creatorcontrib>Ilinskii, Y.</creatorcontrib><creatorcontrib>Zabolotskaya, E.</creatorcontrib><creatorcontrib>Emelianov, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karpiouk, A.</au><au>Aglyamov, S.</au><au>Ilinskii, Y.</au><au>Zabolotskaya, E.</au><au>Emelianov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>56</volume><issue>11</issue><spage>2380</spage><epage>2387</epage><pages>2380-2387</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>An ultrasound-based method to locally assess the shear modulus of a medium is reported. The proposed approach is based on the application of an impulse acoustic radiation force to an inhomogeneity in the medium and subsequent monitoring of the spatio-temporal response. In our experimental studies, a short pulse produced by a 1.5-MHz highly focused ultrasound transducer was used to initiate the motion of a rigid sphere embedded into an elastic medium. Another 25 MHz focused ultrasound transducer operating in pulse-echo mode was used to track the displacement of the sphere. The experiments were performed in gel phantoms with varying shear modulus to demonstrate the relationship between the displacement of the sphere and shear modulus of the surrounding medium. Because the magnitude of acoustic force applied to sphere depends on the acoustic material properties and, therefore, cannot be used to assess the absolute value of shear modulus, the temporal behavior of the displacement of the sphere was analyzed. The results of this study indicate that there is a strong correlation between the shear modulus of a medium and spatio-temporal characteristics of the motion of the rigid sphere embedded in this medium.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19942525</pmid><doi>10.1109/TUFFC.2009.1326</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2009-11, Vol.56 (11), p.2380-2387
issn 0885-3010
1525-8955
language eng
recordid cdi_pubmed_primary_19942525
source IEEE Electronic Library (IEL)
subjects Acoustic measurement
Acoustic measurements
Acoustic properties
Acoustics
Animals
Anisotropy
Computer Simulation
Connective Tissue - physiology
Displacement
Displacement measurement
Elastic Modulus - physiology
Elasticity
Elasticity Imaging Techniques - instrumentation
Elasticity Imaging Techniques - methods
Exact sciences and technology
Force measurement
Fundamental areas of phenomenology (including applications)
Humans
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Inhomogeneity
Mathematical models
Mechanical factors
Models, Biological
Monitoring
Nonlinear acoustics, macrosonics
Phantoms, Imaging
Physics
Shear modulus
Shear Strength - physiology
Solids
Stress, Mechanical
Transducers
Ultrasonic imaging
Ultrasonic variables measurement
Ultrasound
Viscosity
title Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20shear%20modulus%20of%20tissue%20using%20ultrasound%20radiation%20force%20acting%20on%20a%20spherical%20acoustic%20inhomogeneity&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Karpiouk,%20A.&rft.date=2009-11-01&rft.volume=56&rft.issue=11&rft.spage=2380&rft.epage=2387&rft.pages=2380-2387&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2009.1326&rft_dat=%3Cproquest_RIE%3E36362283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858696487&rft_id=info:pmid/19942525&rft_ieee_id=5306720&rfr_iscdi=true