Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance

The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2009-11, Vol.75 (22), p.7205-7211
Hauptverfasser: Ukibe, Ken, Hashida, Keisuke, Yoshida, Nobuyuki, Takagi, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7211
container_issue 22
container_start_page 7205
container_title Applied and Environmental Microbiology
container_volume 75
creator Ukibe, Ken
Hashida, Keisuke
Yoshida, Nobuyuki
Takagi, Hiroshi
description The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.
doi_str_mv 10.1128/AEM.01249-09
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19801484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21496513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBuAIgehSuHGGCAm4kDJ2Yie-IK2q5UNqVaRtz9bEmWRdErvY2aX992Q_1AIHTj7Mo1fjeZPkJYMTxnj1cb44PwHGC5WBepTMGKgqE3kuHyczAKUyzgs4Sp7FeA0ABcjqaXLEVAWsqIpZ8uOcRqx9b026cJ11RMG6LvVtukRjVhj8cGcopoYCbWy0SGnrQzqPI96iG1fWpd-Db9ZmtN6l6Jr04tY2ONoNpcsxUIzppe8poDP0PHnSYh_pxeE9Tq4-Ly5Pv2ZnF1--nc7PMiM4H7NGFY1opQJJDbDS5HXLqlLKHKg1bSGkQUmAdS24bOpc8pYRgayFYmWBzOTHyad97s26Hqgx5MaAvb4JdsBwpz1a_ffE2ZXu_EbzspKi4FPA-0NA8D_XFEc92Gio79GRX0ddTucFyVQ-yXf_lZwVSgq2hW_-gdd-Hdx0Bs1BqBKmwAl92CMTfIyB2vudGeht2XoqW-_K1qAm_urPfz7gQ7sTeHsAGA327bYFG-8d5ywvGYiH5Va2W_2ygTTGQSMNuhST0iXfodd71KLX2IUp6GrJgeXApNr18xs8Scfh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970606</pqid></control><display><type>article</type><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</creator><creatorcontrib>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</creatorcontrib><description>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01249-09</identifier><identifier>PMID: 19801484</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Antioxidants ; Bacteria ; Basidiomycota - enzymology ; Basidiomycota - genetics ; beta Carotene - genetics ; beta Carotene - metabolism ; Biological and medical sciences ; Biotechnology ; Cells ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Regulation, Fungal ; Genes, Bacterial - genetics ; Genetic Engineering ; Microbiology ; Oxidative Stress - genetics ; Oxygenases - genetics ; Oxygenases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Vitamin A ; Xanthophyllomyces dendrorhous ; Xanthophylls - biosynthesis ; Xanthophylls - genetics ; Yeast</subject><ispartof>Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.7205-7211</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Nov 2009</rights><rights>Copyright © 2009, American Society for Microbiology 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</citedby><cites>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786542/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786542/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22137105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19801484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ukibe, Ken</creatorcontrib><creatorcontrib>Hashida, Keisuke</creatorcontrib><creatorcontrib>Yoshida, Nobuyuki</creatorcontrib><creatorcontrib>Takagi, Hiroshi</creatorcontrib><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</description><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Basidiomycota - enzymology</subject><subject>Basidiomycota - genetics</subject><subject>beta Carotene - genetics</subject><subject>beta Carotene - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes, Bacterial - genetics</subject><subject>Genetic Engineering</subject><subject>Microbiology</subject><subject>Oxidative Stress - genetics</subject><subject>Oxygenases - genetics</subject><subject>Oxygenases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Vitamin A</subject><subject>Xanthophyllomyces dendrorhous</subject><subject>Xanthophylls - biosynthesis</subject><subject>Xanthophylls - genetics</subject><subject>Yeast</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1v1DAQBuAIgehSuHGGCAm4kDJ2Yie-IK2q5UNqVaRtz9bEmWRdErvY2aX992Q_1AIHTj7Mo1fjeZPkJYMTxnj1cb44PwHGC5WBepTMGKgqE3kuHyczAKUyzgs4Sp7FeA0ABcjqaXLEVAWsqIpZ8uOcRqx9b026cJ11RMG6LvVtukRjVhj8cGcopoYCbWy0SGnrQzqPI96iG1fWpd-Db9ZmtN6l6Jr04tY2ONoNpcsxUIzppe8poDP0PHnSYh_pxeE9Tq4-Ly5Pv2ZnF1--nc7PMiM4H7NGFY1opQJJDbDS5HXLqlLKHKg1bSGkQUmAdS24bOpc8pYRgayFYmWBzOTHyad97s26Hqgx5MaAvb4JdsBwpz1a_ffE2ZXu_EbzspKi4FPA-0NA8D_XFEc92Gio79GRX0ddTucFyVQ-yXf_lZwVSgq2hW_-gdd-Hdx0Bs1BqBKmwAl92CMTfIyB2vudGeht2XoqW-_K1qAm_urPfz7gQ7sTeHsAGA327bYFG-8d5ywvGYiH5Va2W_2ygTTGQSMNuhST0iXfodd71KLX2IUp6GrJgeXApNr18xs8Scfh</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Ukibe, Ken</creator><creator>Hashida, Keisuke</creator><creator>Yoshida, Nobuyuki</creator><creator>Takagi, Hiroshi</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H97</scope><scope>H98</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><author>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Basidiomycota - enzymology</topic><topic>Basidiomycota - genetics</topic><topic>beta Carotene - genetics</topic><topic>beta Carotene - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes, Bacterial - genetics</topic><topic>Genetic Engineering</topic><topic>Microbiology</topic><topic>Oxidative Stress - genetics</topic><topic>Oxygenases - genetics</topic><topic>Oxygenases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Vitamin A</topic><topic>Xanthophyllomyces dendrorhous</topic><topic>Xanthophylls - biosynthesis</topic><topic>Xanthophylls - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ukibe, Ken</creatorcontrib><creatorcontrib>Hashida, Keisuke</creatorcontrib><creatorcontrib>Yoshida, Nobuyuki</creatorcontrib><creatorcontrib>Takagi, Hiroshi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ukibe, Ken</au><au>Hashida, Keisuke</au><au>Yoshida, Nobuyuki</au><au>Takagi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>75</volume><issue>22</issue><spage>7205</spage><epage>7211</epage><pages>7205-7211</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19801484</pmid><doi>10.1128/AEM.01249-09</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.7205-7211
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmed_primary_19801484
source MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Antioxidants
Bacteria
Basidiomycota - enzymology
Basidiomycota - genetics
beta Carotene - genetics
beta Carotene - metabolism
Biological and medical sciences
Biotechnology
Cells
Enzymes
Fundamental and applied biological sciences. Psychology
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene expression
Gene Expression Regulation, Fungal
Genes, Bacterial - genetics
Genetic Engineering
Microbiology
Oxidative Stress - genetics
Oxygenases - genetics
Oxygenases - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Vitamin A
Xanthophyllomyces dendrorhous
Xanthophylls - biosynthesis
Xanthophylls - genetics
Yeast
title Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Saccharomyces%20cerevisiae%20for%20Astaxanthin%20Production%20and%20Oxidative%20Stress%20Tolerance&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Ukibe,%20Ken&rft.date=2009-11-01&rft.volume=75&rft.issue=22&rft.spage=7205&rft.epage=7211&rft.pages=7205-7211&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01249-09&rft_dat=%3Cproquest_pubme%3E21496513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970606&rft_id=info:pmid/19801484&rfr_iscdi=true