Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance
The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the gene...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2009-11, Vol.75 (22), p.7205-7211 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7211 |
---|---|
container_issue | 22 |
container_start_page | 7205 |
container_title | Applied and Environmental Microbiology |
container_volume | 75 |
creator | Ukibe, Ken Hashida, Keisuke Yoshida, Nobuyuki Takagi, Hiroshi |
description | The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains. |
doi_str_mv | 10.1128/AEM.01249-09 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19801484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21496513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBuAIgehSuHGGCAm4kDJ2Yie-IK2q5UNqVaRtz9bEmWRdErvY2aX992Q_1AIHTj7Mo1fjeZPkJYMTxnj1cb44PwHGC5WBepTMGKgqE3kuHyczAKUyzgs4Sp7FeA0ABcjqaXLEVAWsqIpZ8uOcRqx9b026cJ11RMG6LvVtukRjVhj8cGcopoYCbWy0SGnrQzqPI96iG1fWpd-Db9ZmtN6l6Jr04tY2ONoNpcsxUIzppe8poDP0PHnSYh_pxeE9Tq4-Ly5Pv2ZnF1--nc7PMiM4H7NGFY1opQJJDbDS5HXLqlLKHKg1bSGkQUmAdS24bOpc8pYRgayFYmWBzOTHyad97s26Hqgx5MaAvb4JdsBwpz1a_ffE2ZXu_EbzspKi4FPA-0NA8D_XFEc92Gio79GRX0ddTucFyVQ-yXf_lZwVSgq2hW_-gdd-Hdx0Bs1BqBKmwAl92CMTfIyB2vudGeht2XoqW-_K1qAm_urPfz7gQ7sTeHsAGA327bYFG-8d5ywvGYiH5Va2W_2ygTTGQSMNuhST0iXfodd71KLX2IUp6GrJgeXApNr18xs8Scfh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970606</pqid></control><display><type>article</type><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</creator><creatorcontrib>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</creatorcontrib><description>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.01249-09</identifier><identifier>PMID: 19801484</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Antioxidants ; Bacteria ; Basidiomycota - enzymology ; Basidiomycota - genetics ; beta Carotene - genetics ; beta Carotene - metabolism ; Biological and medical sciences ; Biotechnology ; Cells ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Regulation, Fungal ; Genes, Bacterial - genetics ; Genetic Engineering ; Microbiology ; Oxidative Stress - genetics ; Oxygenases - genetics ; Oxygenases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Vitamin A ; Xanthophyllomyces dendrorhous ; Xanthophylls - biosynthesis ; Xanthophylls - genetics ; Yeast</subject><ispartof>Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.7205-7211</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Nov 2009</rights><rights>Copyright © 2009, American Society for Microbiology 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</citedby><cites>FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786542/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786542/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22137105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19801484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ukibe, Ken</creatorcontrib><creatorcontrib>Hashida, Keisuke</creatorcontrib><creatorcontrib>Yoshida, Nobuyuki</creatorcontrib><creatorcontrib>Takagi, Hiroshi</creatorcontrib><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</description><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Basidiomycota - enzymology</subject><subject>Basidiomycota - genetics</subject><subject>beta Carotene - genetics</subject><subject>beta Carotene - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes, Bacterial - genetics</subject><subject>Genetic Engineering</subject><subject>Microbiology</subject><subject>Oxidative Stress - genetics</subject><subject>Oxygenases - genetics</subject><subject>Oxygenases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Vitamin A</subject><subject>Xanthophyllomyces dendrorhous</subject><subject>Xanthophylls - biosynthesis</subject><subject>Xanthophylls - genetics</subject><subject>Yeast</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1v1DAQBuAIgehSuHGGCAm4kDJ2Yie-IK2q5UNqVaRtz9bEmWRdErvY2aX992Q_1AIHTj7Mo1fjeZPkJYMTxnj1cb44PwHGC5WBepTMGKgqE3kuHyczAKUyzgs4Sp7FeA0ABcjqaXLEVAWsqIpZ8uOcRqx9b026cJ11RMG6LvVtukRjVhj8cGcopoYCbWy0SGnrQzqPI96iG1fWpd-Db9ZmtN6l6Jr04tY2ONoNpcsxUIzppe8poDP0PHnSYh_pxeE9Tq4-Ly5Pv2ZnF1--nc7PMiM4H7NGFY1opQJJDbDS5HXLqlLKHKg1bSGkQUmAdS24bOpc8pYRgayFYmWBzOTHyad97s26Hqgx5MaAvb4JdsBwpz1a_ffE2ZXu_EbzspKi4FPA-0NA8D_XFEc92Gio79GRX0ddTucFyVQ-yXf_lZwVSgq2hW_-gdd-Hdx0Bs1BqBKmwAl92CMTfIyB2vudGeht2XoqW-_K1qAm_urPfz7gQ7sTeHsAGA327bYFG-8d5ywvGYiH5Va2W_2ygTTGQSMNuhST0iXfodd71KLX2IUp6GrJgeXApNr18xs8Scfh</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Ukibe, Ken</creator><creator>Hashida, Keisuke</creator><creator>Yoshida, Nobuyuki</creator><creator>Takagi, Hiroshi</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H97</scope><scope>H98</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</title><author>Ukibe, Ken ; Hashida, Keisuke ; Yoshida, Nobuyuki ; Takagi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d94d5f6906ed017c3bf1876630efcf456ca6e0abb526db362f1ee06b59174a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Basidiomycota - enzymology</topic><topic>Basidiomycota - genetics</topic><topic>beta Carotene - genetics</topic><topic>beta Carotene - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes, Bacterial - genetics</topic><topic>Genetic Engineering</topic><topic>Microbiology</topic><topic>Oxidative Stress - genetics</topic><topic>Oxygenases - genetics</topic><topic>Oxygenases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Vitamin A</topic><topic>Xanthophyllomyces dendrorhous</topic><topic>Xanthophylls - biosynthesis</topic><topic>Xanthophylls - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ukibe, Ken</creatorcontrib><creatorcontrib>Hashida, Keisuke</creatorcontrib><creatorcontrib>Yoshida, Nobuyuki</creatorcontrib><creatorcontrib>Takagi, Hiroshi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ukibe, Ken</au><au>Hashida, Keisuke</au><au>Yoshida, Nobuyuki</au><au>Takagi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>75</volume><issue>22</issue><spage>7205</spage><epage>7211</epage><pages>7205-7211</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of β-carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular β-carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the β-carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding β-carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>19801484</pmid><doi>10.1128/AEM.01249-09</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2009-11, Vol.75 (22), p.7205-7211 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_pubmed_primary_19801484 |
source | MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Antioxidants Bacteria Basidiomycota - enzymology Basidiomycota - genetics beta Carotene - genetics beta Carotene - metabolism Biological and medical sciences Biotechnology Cells Enzymes Fundamental and applied biological sciences. Psychology Fungal Proteins - genetics Fungal Proteins - metabolism Gene expression Gene Expression Regulation, Fungal Genes, Bacterial - genetics Genetic Engineering Microbiology Oxidative Stress - genetics Oxygenases - genetics Oxygenases - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Vitamin A Xanthophyllomyces dendrorhous Xanthophylls - biosynthesis Xanthophylls - genetics Yeast |
title | Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Saccharomyces%20cerevisiae%20for%20Astaxanthin%20Production%20and%20Oxidative%20Stress%20Tolerance&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Ukibe,%20Ken&rft.date=2009-11-01&rft.volume=75&rft.issue=22&rft.spage=7205&rft.epage=7211&rft.pages=7205-7211&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.01249-09&rft_dat=%3Cproquest_pubme%3E21496513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970606&rft_id=info:pmid/19801484&rfr_iscdi=true |