Automatic Histogram Threshold Using Fuzzy Measures

In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2010-01, Vol.19 (1), p.199-204
Hauptverfasser: Lopes, N.V., Mogadouro do Couto, P.A., Bustince, H., Melo-Pinto, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 199
container_title IEEE transactions on image processing
container_volume 19
creator Lopes, N.V.
Mogadouro do Couto, P.A.
Bustince, H.
Melo-Pinto, P.
description In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the key to find an optimal threshold. Two initial regions of gray levels, located at the boundaries of the histogram, are defined. Then, using an index of fuzziness, a similarity process is started to find the threshold point. A significant contrast between objects and background is assumed. Previous histogram equalization is used in small contrast images. No prior knowledge of the image is required.
doi_str_mv 10.1109/TIP.2009.2032349
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_19758860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5238591</ieee_id><sourcerecordid>734195010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f494dea7131663354b464f36e81a198f1720c1ec8e47c70f99c6214627bfd9523</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhhujEUTvJiZmL8bTYqft9uNIiAgJRg9w3pTSwppdFtvdA_x6S9jgZWaS95nJ5EHoEfAQAKu3xex7SDBWsVBCmbpCfVAMUowZuY4zzkQqgKkeugvhB2NgGfBb1AMlMik57iMyapu60k1hkmkRmnrjdZUstt6GbV2uk2Uodptk0h6Ph-TT6tDG4B7dOF0G-9D1AVpO3hfjaTr_-piNR_PUUJE1qWOKra0WQIFzSjO2Ypw5yq0EDUo6EAQbsEZaJozATinDCTBOxMqtVUboAL2e7-59_dva0ORVEYwtS72zdRtyQRmoDAOOJD6TxtcheOvyvS8q7Q854PwkKo-i8pOovBMVV5674-2qsuv_hc5MBF46QAejS-f1zhThwhFCFZdcRu7pzBXW2ksc35eZAvoHDjh3Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734195010</pqid></control><display><type>article</type><title>Automatic Histogram Threshold Using Fuzzy Measures</title><source>IEEE Electronic Library (IEL)</source><creator>Lopes, N.V. ; Mogadouro do Couto, P.A. ; Bustince, H. ; Melo-Pinto, P.</creator><creatorcontrib>Lopes, N.V. ; Mogadouro do Couto, P.A. ; Bustince, H. ; Melo-Pinto, P.</creatorcontrib><description>In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the key to find an optimal threshold. Two initial regions of gray levels, located at the boundaries of the histogram, are defined. Then, using an index of fuzziness, a similarity process is started to find the threshold point. A significant contrast between objects and background is assumed. Previous histogram equalization is used in small contrast images. No prior knowledge of the image is required.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2009.2032349</identifier><identifier>PMID: 19758860</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Application software ; Applied sciences ; Automatic histogram ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Failure analysis ; Fuzzy logic ; fuzzy measures ; Fuzzy set theory ; Fuzzy sets ; Histograms ; Humans ; Image processing ; Image segmentation ; index of fuzziness ; Information, signal and communications theory ; Pixel ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; threshold</subject><ispartof>IEEE transactions on image processing, 2010-01, Vol.19 (1), p.199-204</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f494dea7131663354b464f36e81a198f1720c1ec8e47c70f99c6214627bfd9523</citedby><cites>FETCH-LOGICAL-c375t-f494dea7131663354b464f36e81a198f1720c1ec8e47c70f99c6214627bfd9523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5238591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5238591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22396868$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19758860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, N.V.</creatorcontrib><creatorcontrib>Mogadouro do Couto, P.A.</creatorcontrib><creatorcontrib>Bustince, H.</creatorcontrib><creatorcontrib>Melo-Pinto, P.</creatorcontrib><title>Automatic Histogram Threshold Using Fuzzy Measures</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the key to find an optimal threshold. Two initial regions of gray levels, located at the boundaries of the histogram, are defined. Then, using an index of fuzziness, a similarity process is started to find the threshold point. A significant contrast between objects and background is assumed. Previous histogram equalization is used in small contrast images. No prior knowledge of the image is required.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Automatic histogram</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Failure analysis</subject><subject>Fuzzy logic</subject><subject>fuzzy measures</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>index of fuzziness</subject><subject>Information, signal and communications theory</subject><subject>Pixel</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>threshold</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1PAjEQhhujEUTvJiZmL8bTYqft9uNIiAgJRg9w3pTSwppdFtvdA_x6S9jgZWaS95nJ5EHoEfAQAKu3xex7SDBWsVBCmbpCfVAMUowZuY4zzkQqgKkeugvhB2NgGfBb1AMlMik57iMyapu60k1hkmkRmnrjdZUstt6GbV2uk2Uodptk0h6Ph-TT6tDG4B7dOF0G-9D1AVpO3hfjaTr_-piNR_PUUJE1qWOKra0WQIFzSjO2Ypw5yq0EDUo6EAQbsEZaJozATinDCTBOxMqtVUboAL2e7-59_dva0ORVEYwtS72zdRtyQRmoDAOOJD6TxtcheOvyvS8q7Q854PwkKo-i8pOovBMVV5674-2qsuv_hc5MBF46QAejS-f1zhThwhFCFZdcRu7pzBXW2ksc35eZAvoHDjh3Og</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Lopes, N.V.</creator><creator>Mogadouro do Couto, P.A.</creator><creator>Bustince, H.</creator><creator>Melo-Pinto, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201001</creationdate><title>Automatic Histogram Threshold Using Fuzzy Measures</title><author>Lopes, N.V. ; Mogadouro do Couto, P.A. ; Bustince, H. ; Melo-Pinto, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f494dea7131663354b464f36e81a198f1720c1ec8e47c70f99c6214627bfd9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Automatic histogram</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Failure analysis</topic><topic>Fuzzy logic</topic><topic>fuzzy measures</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>index of fuzziness</topic><topic>Information, signal and communications theory</topic><topic>Pixel</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, N.V.</creatorcontrib><creatorcontrib>Mogadouro do Couto, P.A.</creatorcontrib><creatorcontrib>Bustince, H.</creatorcontrib><creatorcontrib>Melo-Pinto, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopes, N.V.</au><au>Mogadouro do Couto, P.A.</au><au>Bustince, H.</au><au>Melo-Pinto, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Histogram Threshold Using Fuzzy Measures</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2010-01</date><risdate>2010</risdate><volume>19</volume><issue>1</issue><spage>199</spage><epage>204</epage><pages>199-204</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the key to find an optimal threshold. Two initial regions of gray levels, located at the boundaries of the histogram, are defined. Then, using an index of fuzziness, a similarity process is started to find the threshold point. A significant contrast between objects and background is assumed. Previous histogram equalization is used in small contrast images. No prior knowledge of the image is required.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19758860</pmid><doi>10.1109/TIP.2009.2032349</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2010-01, Vol.19 (1), p.199-204
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_19758860
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Automatic histogram
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Failure analysis
Fuzzy logic
fuzzy measures
Fuzzy set theory
Fuzzy sets
Histograms
Humans
Image processing
Image segmentation
index of fuzziness
Information, signal and communications theory
Pixel
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
threshold
title Automatic Histogram Threshold Using Fuzzy Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Histogram%20Threshold%20Using%20Fuzzy%20Measures&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lopes,%20N.V.&rft.date=2010-01&rft.volume=19&rft.issue=1&rft.spage=199&rft.epage=204&rft.pages=199-204&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2009.2032349&rft_dat=%3Cproquest_RIE%3E734195010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734195010&rft_id=info:pmid/19758860&rft_ieee_id=5238591&rfr_iscdi=true