Scan pattern optimization for uniform proton beam scanning
Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied t...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2009-08, Vol.36 (8), p.3560-3567 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3567 |
---|---|
container_issue | 8 |
container_start_page | 3560 |
container_title | Medical physics (Lancaster) |
container_volume | 36 |
creator | Anferov, Vladimir A. |
description | Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the
3
m
long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within
±
3
%
for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient. |
doi_str_mv | 10.1118/1.3158731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19746790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67646090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMozji68AWkKxdCx5xcWxeCDN5gREFdhzZNJdKbTauMT2_qVHSjuDqQfOfnPx9C-4DnABAdw5wCjySFDTQlTNKQERxvoinGMQsJw3yCdpx7xhgLyvE2mkAsmZAxnqKTe51UQZN0nWmroG46W9r3pLN1FeR1G_SV9aMMmrbu_FNqkjJwfqOy1dMu2sqTwpm9cc7Q48X5w-IqXN5eXi_OlqFmQCCMcERMznnEUmEMSTVkQKgBDjKPqB5q5FxHUmbCcAJEMMN85ZjRNCZaYDpDh-tcX-KlN65TpXXaFEVSmbp3SkjBBI4H8GAE-7Q0mWpaWybtSn1d64FwDbzZwqy-_7EaNCpQo0Z1czcMz5-ueadt9ynl953Boxo9qtGjDzj6d8Bf8Gvd_mjXZDn9AFmUk3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67646090</pqid></control><display><type>article</type><title>Scan pattern optimization for uniform proton beam scanning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Anferov, Vladimir A.</creator><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><description>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the
3
m
long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within
±
3
%
for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.3158731</identifier><identifier>PMID: 19746790</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>beam scanning ; biological effects of ionising particles ; Calibration ; Collimators ; dosimetry ; Dosimetry/exposure assessment ; Field size ; Linear Models ; Magnets ; proton effects ; proton radiation therapy ; Proton therapy ; Protons ; Protons - therapeutic use ; Radiation safety ; radiation therapy ; Radiation treatment ; Radiotherapy - instrumentation ; Radiotherapy - methods ; Radiotherapy Dosage ; Reproducibility of Results ; Therapeutic applications, including brachytherapy</subject><ispartof>Medical physics (Lancaster), 2009-08, Vol.36 (8), p.3560-3567</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2009 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</citedby><cites>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3158731$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3158731$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19746790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><title>Scan pattern optimization for uniform proton beam scanning</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the
3
m
long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within
±
3
%
for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</description><subject>beam scanning</subject><subject>biological effects of ionising particles</subject><subject>Calibration</subject><subject>Collimators</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>Field size</subject><subject>Linear Models</subject><subject>Magnets</subject><subject>proton effects</subject><subject>proton radiation therapy</subject><subject>Proton therapy</subject><subject>Protons</subject><subject>Protons - therapeutic use</subject><subject>Radiation safety</subject><subject>radiation therapy</subject><subject>Radiation treatment</subject><subject>Radiotherapy - instrumentation</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Dosage</subject><subject>Reproducibility of Results</subject><subject>Therapeutic applications, including brachytherapy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtKxDAUhoMozji68AWkKxdCx5xcWxeCDN5gREFdhzZNJdKbTauMT2_qVHSjuDqQfOfnPx9C-4DnABAdw5wCjySFDTQlTNKQERxvoinGMQsJw3yCdpx7xhgLyvE2mkAsmZAxnqKTe51UQZN0nWmroG46W9r3pLN1FeR1G_SV9aMMmrbu_FNqkjJwfqOy1dMu2sqTwpm9cc7Q48X5w-IqXN5eXi_OlqFmQCCMcERMznnEUmEMSTVkQKgBDjKPqB5q5FxHUmbCcAJEMMN85ZjRNCZaYDpDh-tcX-KlN65TpXXaFEVSmbp3SkjBBI4H8GAE-7Q0mWpaWybtSn1d64FwDbzZwqy-_7EaNCpQo0Z1czcMz5-ueadt9ynl953Boxo9qtGjDzj6d8Bf8Gvd_mjXZDn9AFmUk3Y</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Anferov, Vladimir A.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200908</creationdate><title>Scan pattern optimization for uniform proton beam scanning</title><author>Anferov, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>beam scanning</topic><topic>biological effects of ionising particles</topic><topic>Calibration</topic><topic>Collimators</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>Field size</topic><topic>Linear Models</topic><topic>Magnets</topic><topic>proton effects</topic><topic>proton radiation therapy</topic><topic>Proton therapy</topic><topic>Protons</topic><topic>Protons - therapeutic use</topic><topic>Radiation safety</topic><topic>radiation therapy</topic><topic>Radiation treatment</topic><topic>Radiotherapy - instrumentation</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Dosage</topic><topic>Reproducibility of Results</topic><topic>Therapeutic applications, including brachytherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anferov, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scan pattern optimization for uniform proton beam scanning</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2009-08</date><risdate>2009</risdate><volume>36</volume><issue>8</issue><spage>3560</spage><epage>3567</epage><pages>3560-3567</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the
3
m
long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within
±
3
%
for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>19746790</pmid><doi>10.1118/1.3158731</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2009-08, Vol.36 (8), p.3560-3567 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_pubmed_primary_19746790 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | beam scanning biological effects of ionising particles Calibration Collimators dosimetry Dosimetry/exposure assessment Field size Linear Models Magnets proton effects proton radiation therapy Proton therapy Protons Protons - therapeutic use Radiation safety radiation therapy Radiation treatment Radiotherapy - instrumentation Radiotherapy - methods Radiotherapy Dosage Reproducibility of Results Therapeutic applications, including brachytherapy |
title | Scan pattern optimization for uniform proton beam scanning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scan%20pattern%20optimization%20for%20uniform%20proton%20beam%20scanning&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Anferov,%20Vladimir%20A.&rft.date=2009-08&rft.volume=36&rft.issue=8&rft.spage=3560&rft.epage=3567&rft.pages=3560-3567&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3158731&rft_dat=%3Cproquest_pubme%3E67646090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67646090&rft_id=info:pmid/19746790&rfr_iscdi=true |