Scan pattern optimization for uniform proton beam scanning

Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2009-08, Vol.36 (8), p.3560-3567
1. Verfasser: Anferov, Vladimir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3567
container_issue 8
container_start_page 3560
container_title Medical physics (Lancaster)
container_volume 36
creator Anferov, Vladimir A.
description Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the 3 m long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within ± 3 % for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.
doi_str_mv 10.1118/1.3158731
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19746790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67646090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMozji68AWkKxdCx5xcWxeCDN5gREFdhzZNJdKbTauMT2_qVHSjuDqQfOfnPx9C-4DnABAdw5wCjySFDTQlTNKQERxvoinGMQsJw3yCdpx7xhgLyvE2mkAsmZAxnqKTe51UQZN0nWmroG46W9r3pLN1FeR1G_SV9aMMmrbu_FNqkjJwfqOy1dMu2sqTwpm9cc7Q48X5w-IqXN5eXi_OlqFmQCCMcERMznnEUmEMSTVkQKgBDjKPqB5q5FxHUmbCcAJEMMN85ZjRNCZaYDpDh-tcX-KlN65TpXXaFEVSmbp3SkjBBI4H8GAE-7Q0mWpaWybtSn1d64FwDbzZwqy-_7EaNCpQo0Z1czcMz5-ueadt9ynl953Boxo9qtGjDzj6d8Bf8Gvd_mjXZDn9AFmUk3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67646090</pqid></control><display><type>article</type><title>Scan pattern optimization for uniform proton beam scanning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Anferov, Vladimir A.</creator><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><description>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the 3 m long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within ± 3 % for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.3158731</identifier><identifier>PMID: 19746790</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>beam scanning ; biological effects of ionising particles ; Calibration ; Collimators ; dosimetry ; Dosimetry/exposure assessment ; Field size ; Linear Models ; Magnets ; proton effects ; proton radiation therapy ; Proton therapy ; Protons ; Protons - therapeutic use ; Radiation safety ; radiation therapy ; Radiation treatment ; Radiotherapy - instrumentation ; Radiotherapy - methods ; Radiotherapy Dosage ; Reproducibility of Results ; Therapeutic applications, including brachytherapy</subject><ispartof>Medical physics (Lancaster), 2009-08, Vol.36 (8), p.3560-3567</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2009 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</citedby><cites>FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3158731$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3158731$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19746790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><title>Scan pattern optimization for uniform proton beam scanning</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the 3 m long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within ± 3 % for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</description><subject>beam scanning</subject><subject>biological effects of ionising particles</subject><subject>Calibration</subject><subject>Collimators</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>Field size</subject><subject>Linear Models</subject><subject>Magnets</subject><subject>proton effects</subject><subject>proton radiation therapy</subject><subject>Proton therapy</subject><subject>Protons</subject><subject>Protons - therapeutic use</subject><subject>Radiation safety</subject><subject>radiation therapy</subject><subject>Radiation treatment</subject><subject>Radiotherapy - instrumentation</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Dosage</subject><subject>Reproducibility of Results</subject><subject>Therapeutic applications, including brachytherapy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtKxDAUhoMozji68AWkKxdCx5xcWxeCDN5gREFdhzZNJdKbTauMT2_qVHSjuDqQfOfnPx9C-4DnABAdw5wCjySFDTQlTNKQERxvoinGMQsJw3yCdpx7xhgLyvE2mkAsmZAxnqKTe51UQZN0nWmroG46W9r3pLN1FeR1G_SV9aMMmrbu_FNqkjJwfqOy1dMu2sqTwpm9cc7Q48X5w-IqXN5eXi_OlqFmQCCMcERMznnEUmEMSTVkQKgBDjKPqB5q5FxHUmbCcAJEMMN85ZjRNCZaYDpDh-tcX-KlN65TpXXaFEVSmbp3SkjBBI4H8GAE-7Q0mWpaWybtSn1d64FwDbzZwqy-_7EaNCpQo0Z1czcMz5-ueadt9ynl953Boxo9qtGjDzj6d8Bf8Gvd_mjXZDn9AFmUk3Y</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Anferov, Vladimir A.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200908</creationdate><title>Scan pattern optimization for uniform proton beam scanning</title><author>Anferov, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4121-8082ef5584b6ee2bc1d123e1517f83c6790f5c877d6e521264e4405943b92c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>beam scanning</topic><topic>biological effects of ionising particles</topic><topic>Calibration</topic><topic>Collimators</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>Field size</topic><topic>Linear Models</topic><topic>Magnets</topic><topic>proton effects</topic><topic>proton radiation therapy</topic><topic>Proton therapy</topic><topic>Protons</topic><topic>Protons - therapeutic use</topic><topic>Radiation safety</topic><topic>radiation therapy</topic><topic>Radiation treatment</topic><topic>Radiotherapy - instrumentation</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Dosage</topic><topic>Reproducibility of Results</topic><topic>Therapeutic applications, including brachytherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anferov, Vladimir A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anferov, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scan pattern optimization for uniform proton beam scanning</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2009-08</date><risdate>2009</risdate><volume>36</volume><issue>8</issue><spage>3560</spage><epage>3567</epage><pages>3560-3567</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Magnetic beam scanning allows one to spread proton beam over the desired radiation field area, improving beam utilization and conformity to the target area. This article discusses generic scan forms for generating uniform circular and rectangular fields and establishes criteria that can be applied to optimize selected scan patterns. During construction of the Midwest Proton Radiotherapy Institute (MPRI), Indiana University developed a magnetically scanned beam spreading system for the 3 m long gantry nozzle. Based on the commissioning experience, criteria for optimizing the scan patterns were derived. A numerical integration model was used to perform initial optimization of the resulting dose distribution. The selected scan patterns were then experimentally validated via test irradiation of Gafchromic films. Generic spiral and linear scan forms are proposed capable of delivering uniform circular and rectangular fields in continuous scanning mode. The test irradiations performed indicate that dose uniformity is within ± 3 % for both scan forms and that penumbra of the uncollimated field can approach the radius of the pristine beam spot. A well designed uniform scanning system can have a large library of uniform circular and rectangular fields of different sizes, which would increase beam utilization and minimize out-of-field dose to the patient.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>19746790</pmid><doi>10.1118/1.3158731</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2009-08, Vol.36 (8), p.3560-3567
issn 0094-2405
2473-4209
language eng
recordid cdi_pubmed_primary_19746790
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects beam scanning
biological effects of ionising particles
Calibration
Collimators
dosimetry
Dosimetry/exposure assessment
Field size
Linear Models
Magnets
proton effects
proton radiation therapy
Proton therapy
Protons
Protons - therapeutic use
Radiation safety
radiation therapy
Radiation treatment
Radiotherapy - instrumentation
Radiotherapy - methods
Radiotherapy Dosage
Reproducibility of Results
Therapeutic applications, including brachytherapy
title Scan pattern optimization for uniform proton beam scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scan%20pattern%20optimization%20for%20uniform%20proton%20beam%20scanning&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Anferov,%20Vladimir%20A.&rft.date=2009-08&rft.volume=36&rft.issue=8&rft.spage=3560&rft.epage=3567&rft.pages=3560-3567&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3158731&rft_dat=%3Cproquest_pubme%3E67646090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67646090&rft_id=info:pmid/19746790&rfr_iscdi=true