A contoured gap coaxial plasma gun with injected plasma armature
A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200 μ g of plasma with density above 10 17 cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refu...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2009-08, Vol.80 (8), p.083506-083506-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 083506-15 |
---|---|
container_issue | 8 |
container_start_page | 083506 |
container_title | Review of scientific instruments |
container_volume | 80 |
creator | Witherspoon, F. Douglas Case, Andrew Messer, Sarah J. Bomgardner, Richard Phillips, Michael W. Brockington, Samuel Elton, Raymond |
description | A new coaxial plasma gun is described. The long term objective is to accelerate
100
–
200
μ
g
of plasma with density above
10
17
cm
−
3
to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately
200
μ
g
has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments. |
doi_str_mv | 10.1063/1.3202136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19725654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67632964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMobk4v_ANSEASFzpzT3ohjeIKBN3od0jTdOtqmNqmHf2_GirsQzU0Ieb6X93sAOEVwiiAn12hKMMSI8D0wRjBJY8Ex2QdjCAmNuaDJCBw5t4bhMIQOwQilAjPO6BjcziJtG2_7zuTRUrXhpT5LVUVtpVytomXfRB-lX0VlszbaB2j4UF2tfJg6BgeFqpw5Ge4JeL2_e5k_xovnh6f5bBFrSriPE5GlGjGVIwOpYCrhJBW6YDlhJhSkUGCRKc5ghonIVUYzk7I0ESRJaZabgkzA-TbXOl9Kp0tv9CpUb0IriXFYDGIYqIst1Xb2rTfOy7p02lSVaoztneSCE5xyGsDLLag761xnCtl2Za26L4mg3EiVSA5SA3s2hPZZbfIdOVgMwM0W2NRSvrTN32kz-eNbBt9y4zsEXP0V8G673bBs8-I_-Hf3b8ZaoPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67632964</pqid></control><display><type>article</type><title>A contoured gap coaxial plasma gun with injected plasma armature</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</creator><creatorcontrib>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</creatorcontrib><description>A new coaxial plasma gun is described. The long term objective is to accelerate
100
–
200
μ
g
of plasma with density above
10
17
cm
−
3
to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately
200
μ
g
has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3202136</identifier><identifier>PMID: 19725654</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ACCELERATORS ; ANGULAR MOMENTUM ; CAPILLARIES ; ELECTRIC DISCHARGES ; ELECTRODES ; ENERGY DENSITY ; MACH NUMBER ; MAGNETOHYDRODYNAMICS ; PLASMA DENSITY ; PLASMA GUNS ; PLASMA JETS ; PLASMA PRODUCTION</subject><ispartof>Review of scientific instruments, 2009-08, Vol.80 (8), p.083506-083506-15</ispartof><rights>American Institute of Physics</rights><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</citedby><cites>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3202136$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,1554,4498,27905,27906,76133,76139</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19725654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22051020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Witherspoon, F. Douglas</creatorcontrib><creatorcontrib>Case, Andrew</creatorcontrib><creatorcontrib>Messer, Sarah J.</creatorcontrib><creatorcontrib>Bomgardner, Richard</creatorcontrib><creatorcontrib>Phillips, Michael W.</creatorcontrib><creatorcontrib>Brockington, Samuel</creatorcontrib><creatorcontrib>Elton, Raymond</creatorcontrib><title>A contoured gap coaxial plasma gun with injected plasma armature</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A new coaxial plasma gun is described. The long term objective is to accelerate
100
–
200
μ
g
of plasma with density above
10
17
cm
−
3
to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately
200
μ
g
has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ACCELERATORS</subject><subject>ANGULAR MOMENTUM</subject><subject>CAPILLARIES</subject><subject>ELECTRIC DISCHARGES</subject><subject>ELECTRODES</subject><subject>ENERGY DENSITY</subject><subject>MACH NUMBER</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PLASMA DENSITY</subject><subject>PLASMA GUNS</subject><subject>PLASMA JETS</subject><subject>PLASMA PRODUCTION</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAYhoMobk4v_ANSEASFzpzT3ohjeIKBN3od0jTdOtqmNqmHf2_GirsQzU0Ieb6X93sAOEVwiiAn12hKMMSI8D0wRjBJY8Ex2QdjCAmNuaDJCBw5t4bhMIQOwQilAjPO6BjcziJtG2_7zuTRUrXhpT5LVUVtpVytomXfRB-lX0VlszbaB2j4UF2tfJg6BgeFqpw5Ge4JeL2_e5k_xovnh6f5bBFrSriPE5GlGjGVIwOpYCrhJBW6YDlhJhSkUGCRKc5ghonIVUYzk7I0ESRJaZabgkzA-TbXOl9Kp0tv9CpUb0IriXFYDGIYqIst1Xb2rTfOy7p02lSVaoztneSCE5xyGsDLLag761xnCtl2Za26L4mg3EiVSA5SA3s2hPZZbfIdOVgMwM0W2NRSvrTN32kz-eNbBt9y4zsEXP0V8G673bBs8-I_-Hf3b8ZaoPk</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Witherspoon, F. Douglas</creator><creator>Case, Andrew</creator><creator>Messer, Sarah J.</creator><creator>Bomgardner, Richard</creator><creator>Phillips, Michael W.</creator><creator>Brockington, Samuel</creator><creator>Elton, Raymond</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>A contoured gap coaxial plasma gun with injected plasma armature</title><author>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ACCELERATORS</topic><topic>ANGULAR MOMENTUM</topic><topic>CAPILLARIES</topic><topic>ELECTRIC DISCHARGES</topic><topic>ELECTRODES</topic><topic>ENERGY DENSITY</topic><topic>MACH NUMBER</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PLASMA DENSITY</topic><topic>PLASMA GUNS</topic><topic>PLASMA JETS</topic><topic>PLASMA PRODUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witherspoon, F. Douglas</creatorcontrib><creatorcontrib>Case, Andrew</creatorcontrib><creatorcontrib>Messer, Sarah J.</creatorcontrib><creatorcontrib>Bomgardner, Richard</creatorcontrib><creatorcontrib>Phillips, Michael W.</creatorcontrib><creatorcontrib>Brockington, Samuel</creatorcontrib><creatorcontrib>Elton, Raymond</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witherspoon, F. Douglas</au><au>Case, Andrew</au><au>Messer, Sarah J.</au><au>Bomgardner, Richard</au><au>Phillips, Michael W.</au><au>Brockington, Samuel</au><au>Elton, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contoured gap coaxial plasma gun with injected plasma armature</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>80</volume><issue>8</issue><spage>083506</spage><epage>083506-15</epage><pages>083506-083506-15</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A new coaxial plasma gun is described. The long term objective is to accelerate
100
–
200
μ
g
of plasma with density above
10
17
cm
−
3
to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately
200
μ
g
has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19725654</pmid><doi>10.1063/1.3202136</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2009-08, Vol.80 (8), p.083506-083506-15 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_19725654 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ACCELERATORS ANGULAR MOMENTUM CAPILLARIES ELECTRIC DISCHARGES ELECTRODES ENERGY DENSITY MACH NUMBER MAGNETOHYDRODYNAMICS PLASMA DENSITY PLASMA GUNS PLASMA JETS PLASMA PRODUCTION |
title | A contoured gap coaxial plasma gun with injected plasma armature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contoured%20gap%20coaxial%20plasma%20gun%20with%20injected%20plasma%20armature&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Witherspoon,%20F.%20Douglas&rft.date=2009-08-01&rft.volume=80&rft.issue=8&rft.spage=083506&rft.epage=083506-15&rft.pages=083506-083506-15&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3202136&rft_dat=%3Cproquest_pubme%3E67632964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67632964&rft_id=info:pmid/19725654&rfr_iscdi=true |