A contoured gap coaxial plasma gun with injected plasma armature

A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200   μ g of plasma with density above 10 17   cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2009-08, Vol.80 (8), p.083506-083506-15
Hauptverfasser: Witherspoon, F. Douglas, Case, Andrew, Messer, Sarah J., Bomgardner, Richard, Phillips, Michael W., Brockington, Samuel, Elton, Raymond
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083506-15
container_issue 8
container_start_page 083506
container_title Review of scientific instruments
container_volume 80
creator Witherspoon, F. Douglas
Case, Andrew
Messer, Sarah J.
Bomgardner, Richard
Phillips, Michael W.
Brockington, Samuel
Elton, Raymond
description A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200   μ g of plasma with density above 10 17   cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200   μ g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
doi_str_mv 10.1063/1.3202136
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19725654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67632964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMobk4v_ANSEASFzpzT3ohjeIKBN3od0jTdOtqmNqmHf2_GirsQzU0Ieb6X93sAOEVwiiAn12hKMMSI8D0wRjBJY8Ex2QdjCAmNuaDJCBw5t4bhMIQOwQilAjPO6BjcziJtG2_7zuTRUrXhpT5LVUVtpVytomXfRB-lX0VlszbaB2j4UF2tfJg6BgeFqpw5Ge4JeL2_e5k_xovnh6f5bBFrSriPE5GlGjGVIwOpYCrhJBW6YDlhJhSkUGCRKc5ghonIVUYzk7I0ESRJaZabgkzA-TbXOl9Kp0tv9CpUb0IriXFYDGIYqIst1Xb2rTfOy7p02lSVaoztneSCE5xyGsDLLag761xnCtl2Za26L4mg3EiVSA5SA3s2hPZZbfIdOVgMwM0W2NRSvrTN32kz-eNbBt9y4zsEXP0V8G673bBs8-I_-Hf3b8ZaoPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67632964</pqid></control><display><type>article</type><title>A contoured gap coaxial plasma gun with injected plasma armature</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</creator><creatorcontrib>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</creatorcontrib><description>A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200   μ g of plasma with density above 10 17   cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200   μ g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3202136</identifier><identifier>PMID: 19725654</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ACCELERATORS ; ANGULAR MOMENTUM ; CAPILLARIES ; ELECTRIC DISCHARGES ; ELECTRODES ; ENERGY DENSITY ; MACH NUMBER ; MAGNETOHYDRODYNAMICS ; PLASMA DENSITY ; PLASMA GUNS ; PLASMA JETS ; PLASMA PRODUCTION</subject><ispartof>Review of scientific instruments, 2009-08, Vol.80 (8), p.083506-083506-15</ispartof><rights>American Institute of Physics</rights><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</citedby><cites>FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3202136$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,1554,4498,27905,27906,76133,76139</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19725654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22051020$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Witherspoon, F. Douglas</creatorcontrib><creatorcontrib>Case, Andrew</creatorcontrib><creatorcontrib>Messer, Sarah J.</creatorcontrib><creatorcontrib>Bomgardner, Richard</creatorcontrib><creatorcontrib>Phillips, Michael W.</creatorcontrib><creatorcontrib>Brockington, Samuel</creatorcontrib><creatorcontrib>Elton, Raymond</creatorcontrib><title>A contoured gap coaxial plasma gun with injected plasma armature</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200   μ g of plasma with density above 10 17   cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200   μ g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ACCELERATORS</subject><subject>ANGULAR MOMENTUM</subject><subject>CAPILLARIES</subject><subject>ELECTRIC DISCHARGES</subject><subject>ELECTRODES</subject><subject>ENERGY DENSITY</subject><subject>MACH NUMBER</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PLASMA DENSITY</subject><subject>PLASMA GUNS</subject><subject>PLASMA JETS</subject><subject>PLASMA PRODUCTION</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAYhoMobk4v_ANSEASFzpzT3ohjeIKBN3od0jTdOtqmNqmHf2_GirsQzU0Ieb6X93sAOEVwiiAn12hKMMSI8D0wRjBJY8Ex2QdjCAmNuaDJCBw5t4bhMIQOwQilAjPO6BjcziJtG2_7zuTRUrXhpT5LVUVtpVytomXfRB-lX0VlszbaB2j4UF2tfJg6BgeFqpw5Ge4JeL2_e5k_xovnh6f5bBFrSriPE5GlGjGVIwOpYCrhJBW6YDlhJhSkUGCRKc5ghonIVUYzk7I0ESRJaZabgkzA-TbXOl9Kp0tv9CpUb0IriXFYDGIYqIst1Xb2rTfOy7p02lSVaoztneSCE5xyGsDLLag761xnCtl2Za26L4mg3EiVSA5SA3s2hPZZbfIdOVgMwM0W2NRSvrTN32kz-eNbBt9y4zsEXP0V8G673bBs8-I_-Hf3b8ZaoPk</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Witherspoon, F. Douglas</creator><creator>Case, Andrew</creator><creator>Messer, Sarah J.</creator><creator>Bomgardner, Richard</creator><creator>Phillips, Michael W.</creator><creator>Brockington, Samuel</creator><creator>Elton, Raymond</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>A contoured gap coaxial plasma gun with injected plasma armature</title><author>Witherspoon, F. Douglas ; Case, Andrew ; Messer, Sarah J. ; Bomgardner, Richard ; Phillips, Michael W. ; Brockington, Samuel ; Elton, Raymond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-87b9c15ad1e0475a86397cf5d35e74840727ba650b237dab4be959873894bdef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ACCELERATORS</topic><topic>ANGULAR MOMENTUM</topic><topic>CAPILLARIES</topic><topic>ELECTRIC DISCHARGES</topic><topic>ELECTRODES</topic><topic>ENERGY DENSITY</topic><topic>MACH NUMBER</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PLASMA DENSITY</topic><topic>PLASMA GUNS</topic><topic>PLASMA JETS</topic><topic>PLASMA PRODUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witherspoon, F. Douglas</creatorcontrib><creatorcontrib>Case, Andrew</creatorcontrib><creatorcontrib>Messer, Sarah J.</creatorcontrib><creatorcontrib>Bomgardner, Richard</creatorcontrib><creatorcontrib>Phillips, Michael W.</creatorcontrib><creatorcontrib>Brockington, Samuel</creatorcontrib><creatorcontrib>Elton, Raymond</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witherspoon, F. Douglas</au><au>Case, Andrew</au><au>Messer, Sarah J.</au><au>Bomgardner, Richard</au><au>Phillips, Michael W.</au><au>Brockington, Samuel</au><au>Elton, Raymond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contoured gap coaxial plasma gun with injected plasma armature</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>80</volume><issue>8</issue><spage>083506</spage><epage>083506-15</epage><pages>083506-083506-15</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A new coaxial plasma gun is described. The long term objective is to accelerate 100 – 200   μ g of plasma with density above 10 17   cm − 3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200   μ g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19725654</pmid><doi>10.1063/1.3202136</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2009-08, Vol.80 (8), p.083506-083506-15
issn 0034-6748
1089-7623
language eng
recordid cdi_pubmed_primary_19725654
source American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ACCELERATORS
ANGULAR MOMENTUM
CAPILLARIES
ELECTRIC DISCHARGES
ELECTRODES
ENERGY DENSITY
MACH NUMBER
MAGNETOHYDRODYNAMICS
PLASMA DENSITY
PLASMA GUNS
PLASMA JETS
PLASMA PRODUCTION
title A contoured gap coaxial plasma gun with injected plasma armature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contoured%20gap%20coaxial%20plasma%20gun%20with%20injected%20plasma%20armature&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Witherspoon,%20F.%20Douglas&rft.date=2009-08-01&rft.volume=80&rft.issue=8&rft.spage=083506&rft.epage=083506-15&rft.pages=083506-083506-15&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3202136&rft_dat=%3Cproquest_pubme%3E67632964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67632964&rft_id=info:pmid/19725654&rfr_iscdi=true