In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems

Whole genome sequencing has revolutionized biological sciences, and is leading to a paradigm shift in microbiology. As more microbial genomes are sequenced, and more bioinformatics tools are developed, it has become possible to predict the metabolism of an organism from genomic data. In contrast, pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McNeil, L.K., Aziz, R.K.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 21
container_title
container_volume 6
creator McNeil, L.K.
Aziz, R.K.
description Whole genome sequencing has revolutionized biological sciences, and is leading to a paradigm shift in microbiology. As more microbial genomes are sequenced, and more bioinformatics tools are developed, it has become possible to predict the metabolism of an organism from genomic data. In contrast, predicting the pathogenic potential of parasitic microbes and their interactions with their hosts is still a challenge, especially as the definition of pathogenesis itself is still evolving. In this review, we introduce the subsystem-based technology for genome annotation and analysis, and we discuss some subsystem-based tools available in the National Microbial Pathogen Data Resource (NMPDR, http://www.nmpdr.org) and their potential application in comparative genomics and pathogenomics.
doi_str_mv 10.1159/000235760
format Book Chapter
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19696491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754026479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d81b869dce46279cd4033f162ca71f349f671a216adbd449670e6aa7174342723</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxU0LLQv00C-A3FNPaf13vD4W1FIkEKiFc-Q4k92UxN7GzoFvj5elqsRpZvR-b6Q3Q8hHzr5wru1XxpiQ2gDbI0dyybS23Er1hiw4gKiksebtf0HA_rPAqtLKd2ShNGilBNeH5CilP4xpa5l9Tw65BQvK8gVZXwaa-qH3kf5CH0PK0-xzHwONHc1rpNeYXRMLQF1o6a3L67jCUMbbmDHk3g1b8sz5jNN2uMAQR0z0PvVhRX_PTXpMGcd0Qg46NyT88FKPyf2P73fnP6urm4vL829XlZfc5qpd8mYJtvWoQBjrW8Wk7DgI7wzvpLIdGO4EB9c2rVIWDENwRTNKKmGEPCafd3s3U_w7Y8r12CePw-ACxjnVRismQBlbyNMXcm5GbOvN1I9ueqz_HacA4tUqbGJ88CX25Aa_dpuSOdWScVCgaw613Jo-7UwPblrhtLOkVI6Dqd79Uj4BXdSIWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3016465_16_31</pqid></control><display><type>book_chapter</type><title>In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems</title><source>MEDLINE</source><source>Karger Book Series</source><source>Alma/SFX Local Collection</source><creator>McNeil, L.K. ; Aziz, R.K.</creator><contributor>Bereswill S ; de Reuse H ; Bereswill, S ; de Reuse, H</contributor><creatorcontrib>McNeil, L.K. ; Aziz, R.K. ; Bereswill S ; de Reuse H ; Bereswill, S ; de Reuse, H</creatorcontrib><description>Whole genome sequencing has revolutionized biological sciences, and is leading to a paradigm shift in microbiology. As more microbial genomes are sequenced, and more bioinformatics tools are developed, it has become possible to predict the metabolism of an organism from genomic data. In contrast, predicting the pathogenic potential of parasitic microbes and their interactions with their hosts is still a challenge, especially as the definition of pathogenesis itself is still evolving. In this review, we introduce the subsystem-based technology for genome annotation and analysis, and we discuss some subsystem-based tools available in the National Microbial Pathogen Data Resource (NMPDR, http://www.nmpdr.org) and their potential application in comparative genomics and pathogenomics.</description><identifier>ISSN: 1660-9263</identifier><identifier>ISBN: 3805591926</identifier><identifier>ISBN: 9783805591928</identifier><identifier>EISSN: 1662-3797</identifier><identifier>EISBN: 3805591934</identifier><identifier>EISBN: 9783805591935</identifier><identifier>DOI: 10.1159/000235760</identifier><identifier>OCLC: 456544215</identifier><identifier>PMID: 19696491</identifier><identifier>LCCallNum: QH434.M53 2009</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Chapter ; Computational Biology ; Computer Simulation ; Databases, Genetic ; Genome ; Genome, Bacterial ; Genomics ; Software</subject><ispartof>Genome dynamics, 2009, Vol.6, p.21-34</ispartof><rights>2009 S. Karger AG, Basel</rights><rights>Copyright © 2009 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d81b869dce46279cd4033f162ca71f349f671a216adbd449670e6aa7174342723</citedby><relation>Microbial Pathogenomics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3016465-l.jpg</thumbnail><link.rule.ids>314,779,780,784,793,24781,26081,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19696491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bereswill S</contributor><contributor>de Reuse H</contributor><contributor>Bereswill, S</contributor><contributor>de Reuse, H</contributor><creatorcontrib>McNeil, L.K.</creatorcontrib><creatorcontrib>Aziz, R.K.</creatorcontrib><title>In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems</title><title>Genome dynamics</title><addtitle>Genome Dyn</addtitle><description>Whole genome sequencing has revolutionized biological sciences, and is leading to a paradigm shift in microbiology. As more microbial genomes are sequenced, and more bioinformatics tools are developed, it has become possible to predict the metabolism of an organism from genomic data. In contrast, predicting the pathogenic potential of parasitic microbes and their interactions with their hosts is still a challenge, especially as the definition of pathogenesis itself is still evolving. In this review, we introduce the subsystem-based technology for genome annotation and analysis, and we discuss some subsystem-based tools available in the National Microbial Pathogen Data Resource (NMPDR, http://www.nmpdr.org) and their potential application in comparative genomics and pathogenomics.</description><subject>Chapter</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Genome</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Software</subject><issn>1660-9263</issn><issn>1662-3797</issn><isbn>3805591926</isbn><isbn>9783805591928</isbn><isbn>3805591934</isbn><isbn>9783805591935</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9P3DAQxU0LLQv00C-A3FNPaf13vD4W1FIkEKiFc-Q4k92UxN7GzoFvj5elqsRpZvR-b6Q3Q8hHzr5wru1XxpiQ2gDbI0dyybS23Er1hiw4gKiksebtf0HA_rPAqtLKd2ShNGilBNeH5CilP4xpa5l9Tw65BQvK8gVZXwaa-qH3kf5CH0PK0-xzHwONHc1rpNeYXRMLQF1o6a3L67jCUMbbmDHk3g1b8sz5jNN2uMAQR0z0PvVhRX_PTXpMGcd0Qg46NyT88FKPyf2P73fnP6urm4vL829XlZfc5qpd8mYJtvWoQBjrW8Wk7DgI7wzvpLIdGO4EB9c2rVIWDENwRTNKKmGEPCafd3s3U_w7Y8r12CePw-ACxjnVRismQBlbyNMXcm5GbOvN1I9ueqz_HacA4tUqbGJ88CX25Aa_dpuSOdWScVCgaw613Jo-7UwPblrhtLOkVI6Dqd79Uj4BXdSIWA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>McNeil, L.K.</creator><creator>Aziz, R.K.</creator><general>S. Karger AG</general><scope>FFUUA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems</title><author>McNeil, L.K. ; Aziz, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d81b869dce46279cd4033f162ca71f349f671a216adbd449670e6aa7174342723</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chapter</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Genome</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNeil, L.K.</creatorcontrib><creatorcontrib>Aziz, R.K.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNeil, L.K.</au><au>Aziz, R.K.</au><au>Bereswill S</au><au>de Reuse H</au><au>Bereswill, S</au><au>de Reuse, H</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems</atitle><btitle>Genome dynamics</btitle><addtitle>Genome Dyn</addtitle><seriestitle>Microbial Pathogenomics</seriestitle><date>2009-01-01</date><risdate>2009</risdate><volume>6</volume><spage>21</spage><epage>34</epage><pages>21-34</pages><issn>1660-9263</issn><eissn>1662-3797</eissn><isbn>3805591926</isbn><isbn>9783805591928</isbn><eisbn>3805591934</eisbn><eisbn>9783805591935</eisbn><abstract>Whole genome sequencing has revolutionized biological sciences, and is leading to a paradigm shift in microbiology. As more microbial genomes are sequenced, and more bioinformatics tools are developed, it has become possible to predict the metabolism of an organism from genomic data. In contrast, predicting the pathogenic potential of parasitic microbes and their interactions with their hosts is still a challenge, especially as the definition of pathogenesis itself is still evolving. In this review, we introduce the subsystem-based technology for genome annotation and analysis, and we discuss some subsystem-based tools available in the National Microbial Pathogen Data Resource (NMPDR, http://www.nmpdr.org) and their potential application in comparative genomics and pathogenomics.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>19696491</pmid><doi>10.1159/000235760</doi><oclcid>456544215</oclcid><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9263
ispartof Genome dynamics, 2009, Vol.6, p.21-34
issn 1660-9263
1662-3797
language eng
recordid cdi_pubmed_primary_19696491
source MEDLINE; Karger Book Series; Alma/SFX Local Collection
subjects Chapter
Computational Biology
Computer Simulation
Databases, Genetic
Genome
Genome, Bacterial
Genomics
Software
title In silico Reconstruction of the Metabolic and Pathogenic Potential of Bacterial Genomes Using Subsystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=In%20silico%20Reconstruction%20of%20the%20Metabolic%20and%20Pathogenic%20Potential%20of%20Bacterial%20Genomes%20Using%20Subsystems&rft.btitle=Genome%20dynamics&rft.au=McNeil,%20L.K.&rft.date=2009-01-01&rft.volume=6&rft.spage=21&rft.epage=34&rft.pages=21-34&rft.issn=1660-9263&rft.eissn=1662-3797&rft.isbn=3805591926&rft.isbn_list=9783805591928&rft_id=info:doi/10.1159/000235760&rft_dat=%3Cproquest_pubme%3E754026479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=3805591934&rft.eisbn_list=9783805591935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3016465_16_31&rft_id=info:pmid/19696491&rfr_iscdi=true