ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability
Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-08, Vol.106 (33), p.14174-14179 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14179 |
---|---|
container_issue | 33 |
container_start_page | 14174 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Ticconi, Carla A Lucero, Rocco D Sakhonwasee, Siriwat Adamson, Aaron W Creff, Audrey Nussaume, Laurent Desnos, Thierry Abel, Steffen |
description | Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P₅-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability. |
doi_str_mv | 10.1073/pnas.0901778106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19666499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484386</jstor_id><sourcerecordid>40484386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-88addaf0bd1088b9bfe9980b5e62e8ee86e465c9d045939961fdce352ee79fb03</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxCMEotvCmRNgcUDikPbZThz7goRK-ZBWolro2XKSl65X2Ti1nRX97-toV13gwsmH95vRjCfLXlE4p1Dxi3Ew4RwU0KqSFMSTbEFB0VwUCp5mCwBW5bJgxUl2GsIGAFQp4Xl2QpUQiVGL7O5qlXsMtsUhktG7iHYI5PrzihEztGR5vaJki601EUlcI2lxh70btwk3PUnK0Q0BieuIdy4m1NsQcRtIdGRcuzCuZ6XZGdub2vY23r_InnWmD_jy8J5lN1-ufl1-y5c_vn6__LTMm1KqmEtp2tZ0ULcUpKxV3aFSEuoSBUOJKAUWomxUC0WpuFKCdm2DvGSIlepq4GfZx73vONWpQZMSe9Pr0dut8ffaGav_vgx2rW_dTrOKcSp4Mnh_MPDubsIQ9daGBvveDOimoEUl5s-WCXz3D7hxkx9SOc2AciYoYwm62EONdyF47B6TUNDzlnreUh-3TIo3fxY48ofxEkAOwKw82gnNuaYFrYqEfPgPorup7yP-jol9vWc3ITr_CBdQyILLOc_b_b0zTpvbNLS--TkXBCqEoqXgD_boyGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201326122</pqid></control><display><type>article</type><title>ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ticconi, Carla A ; Lucero, Rocco D ; Sakhonwasee, Siriwat ; Adamson, Aaron W ; Creff, Audrey ; Nussaume, Laurent ; Desnos, Thierry ; Abel, Steffen</creator><creatorcontrib>Ticconi, Carla A ; Lucero, Rocco D ; Sakhonwasee, Siriwat ; Adamson, Aaron W ; Creff, Audrey ; Nussaume, Laurent ; Desnos, Thierry ; Abel, Steffen</creatorcontrib><description>Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P₅-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901778106</identifier><identifier>PMID: 19666499</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - biosynthesis ; Adenosine Triphosphatases - physiology ; adenosinetriphosphatase ; Arabidopsis - metabolism ; Arabidopsis Proteins - biosynthesis ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; Biological Sciences ; cell membranes ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Flowers & plants ; Fluorescence ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Plant ; Genotype & phenotype ; Immunoprecipitation ; Meristem - physiology ; Meristems ; Microscopy, Confocal - methods ; Models, Biological ; Models, Genetic ; multicopper oxidase ; nutrient availability ; oxidoreductases ; Oxidoreductases - biosynthesis ; Oxidoreductases - metabolism ; Oxidoreductases - physiology ; Phenotype ; Phenotypes ; Phosphates ; Phosphates - metabolism ; Plant roots ; Plant Roots - metabolism ; Plants ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Root growth ; Root meristems ; roots ; Signal transduction ; Stem cells ; Stem Cells - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.14174-14179</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-88addaf0bd1088b9bfe9980b5e62e8ee86e465c9d045939961fdce352ee79fb03</citedby><cites>FETCH-LOGICAL-c589t-88addaf0bd1088b9bfe9980b5e62e8ee86e465c9d045939961fdce352ee79fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484386$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484386$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ticconi, Carla A</creatorcontrib><creatorcontrib>Lucero, Rocco D</creatorcontrib><creatorcontrib>Sakhonwasee, Siriwat</creatorcontrib><creatorcontrib>Adamson, Aaron W</creatorcontrib><creatorcontrib>Creff, Audrey</creatorcontrib><creatorcontrib>Nussaume, Laurent</creatorcontrib><creatorcontrib>Desnos, Thierry</creatorcontrib><creatorcontrib>Abel, Steffen</creatorcontrib><title>ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P₅-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - biosynthesis</subject><subject>Adenosine Triphosphatases - physiology</subject><subject>adenosinetriphosphatase</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - biosynthesis</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>cell membranes</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Flowers & plants</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotype & phenotype</subject><subject>Immunoprecipitation</subject><subject>Meristem - physiology</subject><subject>Meristems</subject><subject>Microscopy, Confocal - methods</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>multicopper oxidase</subject><subject>nutrient availability</subject><subject>oxidoreductases</subject><subject>Oxidoreductases - biosynthesis</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxidoreductases - physiology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Plant roots</subject><subject>Plant Roots - metabolism</subject><subject>Plants</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Root growth</subject><subject>Root meristems</subject><subject>roots</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAUxCMEotvCmRNgcUDikPbZThz7goRK-ZBWolro2XKSl65X2Ti1nRX97-toV13gwsmH95vRjCfLXlE4p1Dxi3Ew4RwU0KqSFMSTbEFB0VwUCp5mCwBW5bJgxUl2GsIGAFQp4Xl2QpUQiVGL7O5qlXsMtsUhktG7iHYI5PrzihEztGR5vaJki601EUlcI2lxh70btwk3PUnK0Q0BieuIdy4m1NsQcRtIdGRcuzCuZ6XZGdub2vY23r_InnWmD_jy8J5lN1-ufl1-y5c_vn6__LTMm1KqmEtp2tZ0ULcUpKxV3aFSEuoSBUOJKAUWomxUC0WpuFKCdm2DvGSIlepq4GfZx73vONWpQZMSe9Pr0dut8ffaGav_vgx2rW_dTrOKcSp4Mnh_MPDubsIQ9daGBvveDOimoEUl5s-WCXz3D7hxkx9SOc2AciYoYwm62EONdyF47B6TUNDzlnreUh-3TIo3fxY48ofxEkAOwKw82gnNuaYFrYqEfPgPorup7yP-jol9vWc3ITr_CBdQyILLOc_b_b0zTpvbNLS--TkXBCqEoqXgD_boyGA</recordid><startdate>20090818</startdate><enddate>20090818</enddate><creator>Ticconi, Carla A</creator><creator>Lucero, Rocco D</creator><creator>Sakhonwasee, Siriwat</creator><creator>Adamson, Aaron W</creator><creator>Creff, Audrey</creator><creator>Nussaume, Laurent</creator><creator>Desnos, Thierry</creator><creator>Abel, Steffen</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090818</creationdate><title>ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability</title><author>Ticconi, Carla A ; Lucero, Rocco D ; Sakhonwasee, Siriwat ; Adamson, Aaron W ; Creff, Audrey ; Nussaume, Laurent ; Desnos, Thierry ; Abel, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-88addaf0bd1088b9bfe9980b5e62e8ee86e465c9d045939961fdce352ee79fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - biosynthesis</topic><topic>Adenosine Triphosphatases - physiology</topic><topic>adenosinetriphosphatase</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - biosynthesis</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>cell membranes</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Flowers & plants</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotype & phenotype</topic><topic>Immunoprecipitation</topic><topic>Meristem - physiology</topic><topic>Meristems</topic><topic>Microscopy, Confocal - methods</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>multicopper oxidase</topic><topic>nutrient availability</topic><topic>oxidoreductases</topic><topic>Oxidoreductases - biosynthesis</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxidoreductases - physiology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Plant roots</topic><topic>Plant Roots - metabolism</topic><topic>Plants</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Root growth</topic><topic>Root meristems</topic><topic>roots</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ticconi, Carla A</creatorcontrib><creatorcontrib>Lucero, Rocco D</creatorcontrib><creatorcontrib>Sakhonwasee, Siriwat</creatorcontrib><creatorcontrib>Adamson, Aaron W</creatorcontrib><creatorcontrib>Creff, Audrey</creatorcontrib><creatorcontrib>Nussaume, Laurent</creatorcontrib><creatorcontrib>Desnos, Thierry</creatorcontrib><creatorcontrib>Abel, Steffen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ticconi, Carla A</au><au>Lucero, Rocco D</au><au>Sakhonwasee, Siriwat</au><au>Adamson, Aaron W</au><au>Creff, Audrey</au><au>Nussaume, Laurent</au><au>Desnos, Thierry</au><au>Abel, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-08-18</date><risdate>2009</risdate><volume>106</volume><issue>33</issue><spage>14174</spage><epage>14179</epage><pages>14174-14179</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P₅-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19666499</pmid><doi>10.1073/pnas.0901778106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.14174-14179 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_19666499 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatases Adenosine Triphosphatases - biosynthesis Adenosine Triphosphatases - physiology adenosinetriphosphatase Arabidopsis - metabolism Arabidopsis Proteins - biosynthesis Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Arabidopsis thaliana Biological Sciences cell membranes endoplasmic reticulum Endoplasmic Reticulum - metabolism Flowers & plants Fluorescence Gene expression Gene expression regulation Gene Expression Regulation, Plant Genotype & phenotype Immunoprecipitation Meristem - physiology Meristems Microscopy, Confocal - methods Models, Biological Models, Genetic multicopper oxidase nutrient availability oxidoreductases Oxidoreductases - biosynthesis Oxidoreductases - metabolism Oxidoreductases - physiology Phenotype Phenotypes Phosphates Phosphates - metabolism Plant roots Plant Roots - metabolism Plants Proteins Reverse Transcriptase Polymerase Chain Reaction Root growth Root meristems roots Signal transduction Stem cells Stem Cells - metabolism |
title | ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ER-resident%20proteins%20PDR2%20and%20LPR1%20mediate%20the%20developmental%20response%20of%20root%20meristems%20to%20phosphate%20availability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ticconi,%20Carla%20A&rft.date=2009-08-18&rft.volume=106&rft.issue=33&rft.spage=14174&rft.epage=14179&rft.pages=14174-14179&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901778106&rft_dat=%3Cjstor_pubme%3E40484386%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201326122&rft_id=info:pmid/19666499&rft_jstor_id=40484386&rfr_iscdi=true |