Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons

1 Department of Anesthesiology, University of Washington, Seattle, Washington; and 2 Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana Submitted 25 March 2009; accepted in final form 29 May 2009 Long-term depression (LTD) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2009-08, Vol.102 (2), p.1160-1171
Hauptverfasser: Kellogg, Ryan, Mackie, Ken, Straiker, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue 2
container_start_page 1160
container_title Journal of neurophysiology
container_volume 102
creator Kellogg, Ryan
Mackie, Ken
Straiker, Alex
description 1 Department of Anesthesiology, University of Washington, Seattle, Washington; and 2 Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana Submitted 25 March 2009; accepted in final form 29 May 2009 Long-term depression (LTD) of synaptic signaling—lasting from tens of minutes to hours or longer—is a widespread form of synaptic plasticity in the brain. Neurons express diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured hippocampal neurons, the mechanism of which remains unknown. We have recently reported that autaptic neurons express both endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). We now report that activating cannabinoid CB 1 receptors is necessary for the induction of autLTD. Most surprisingly, CB 1 does not induce autLTD via the G i/o proteins typically activated by this receptor nor with G s . Rather, the requirements of presynaptic phospholipase C and filled calcium stores suggest G q . In autLTD, a 3- to 4-min activation of the receptor by the endocannabinoid 2-arachidonoyl glycerol leads to prolonged inhibition while leaving short-term inhibition (e.g., DSE) intact. autLTD requires activation of both metabo- and ionotropic glutamate receptors. autLTD also requires MEK/ERK activation. Under certain conditions, one or more DSE stimuli will elicit autLTD. It is becoming evident that cannabinoids mediate multiple forms of plasticity at a single synapse, stretching temporally from tens of seconds (DSE/MSE) to tens of minutes (autLTD) to hours (CB 1 desensitization). Our findings imply a remarkable flexibility for the cannabinoid signaling system whereby discrete mechanisms of CB 1 activation within a single neuron yield temporally and mechanistically distinct forms of plasticity. Address for reprint requests and other correspondence: A. Straiker, Dept. of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 (E-mail: straiker{at}indiana.edu )
doi_str_mv 10.1152/jn.00266.2009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19494194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67546300</sourcerecordid><originalsourceid>FETCH-LOGICAL-h402t-43fff9ed7511a137049fd545f79cfc2ce53062540c6faf3f33c90df0772b00f03</originalsourceid><addsrcrecordid>eNpVUMtOwzAQtBAIyuPIFeWEuKSsXwm5IEF5ShVICLharmM3rlI72AnQv8eIh-CyK83MzuwuQvsYxhhzcrxwYwBSFGMCUK2hUcJIjnl1so5GiSA5hbLcQtsxLgCg5EA20RauWMVSGaHniXROzqzzts4m5zh70Ep3vQ_5he60q7Xrs6l38_xRh2WWsKBjtN5l1mVnQy-73qrs8l3ZXqahVXanh-Bd3EUbRrZR7333HfR0dfk4ucmn99e3k7Np3jAgfc6oMabSdckxlpiWwCpTc8ZNWSmjiNKcQkE4A1UYaaihVFVQm3QRmQEYoDvo9Mu3G2ZLXau0bpCt6IJdyrASXlrxn3G2EXP_KkhJGGUsGRx-GwT_MujYi6WNSretdNoPURQlZwWFz6SDv0m_ET-vTIKjL0Fj582bDVp0zSq9qvXzlVg4gYEIIjAugH4AEvmE0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67546300</pqid></control><display><type>article</type><title>Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kellogg, Ryan ; Mackie, Ken ; Straiker, Alex</creator><creatorcontrib>Kellogg, Ryan ; Mackie, Ken ; Straiker, Alex</creatorcontrib><description>1 Department of Anesthesiology, University of Washington, Seattle, Washington; and 2 Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana Submitted 25 March 2009; accepted in final form 29 May 2009 Long-term depression (LTD) of synaptic signaling—lasting from tens of minutes to hours or longer—is a widespread form of synaptic plasticity in the brain. Neurons express diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured hippocampal neurons, the mechanism of which remains unknown. We have recently reported that autaptic neurons express both endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). We now report that activating cannabinoid CB 1 receptors is necessary for the induction of autLTD. Most surprisingly, CB 1 does not induce autLTD via the G i/o proteins typically activated by this receptor nor with G s . Rather, the requirements of presynaptic phospholipase C and filled calcium stores suggest G q . In autLTD, a 3- to 4-min activation of the receptor by the endocannabinoid 2-arachidonoyl glycerol leads to prolonged inhibition while leaving short-term inhibition (e.g., DSE) intact. autLTD requires activation of both metabo- and ionotropic glutamate receptors. autLTD also requires MEK/ERK activation. Under certain conditions, one or more DSE stimuli will elicit autLTD. It is becoming evident that cannabinoids mediate multiple forms of plasticity at a single synapse, stretching temporally from tens of seconds (DSE/MSE) to tens of minutes (autLTD) to hours (CB 1 desensitization). Our findings imply a remarkable flexibility for the cannabinoid signaling system whereby discrete mechanisms of CB 1 activation within a single neuron yield temporally and mechanistically distinct forms of plasticity. Address for reprint requests and other correspondence: A. Straiker, Dept. of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 (E-mail: straiker{at}indiana.edu )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00266.2009</identifier><identifier>PMID: 19494194</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Analysis of Variance ; Animals ; Cells, Cultured ; Electric Stimulation ; Excitatory Postsynaptic Potentials - physiology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Hippocampus - physiology ; Long-Term Synaptic Depression - physiology ; MAP Kinase Kinase Kinases - metabolism ; Mice ; Mice, Knockout ; Neurons - physiology ; Patch-Clamp Techniques ; Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors ; Receptor, Cannabinoid, CB1 - genetics ; Receptor, Cannabinoid, CB1 - metabolism ; Receptors, Glutamate - metabolism ; Synapses - physiology ; Time Factors</subject><ispartof>Journal of neurophysiology, 2009-08, Vol.102 (2), p.1160-1171</ispartof><rights>Copyright © 2009, American Physiological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19494194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellogg, Ryan</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Straiker, Alex</creatorcontrib><title>Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Department of Anesthesiology, University of Washington, Seattle, Washington; and 2 Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana Submitted 25 March 2009; accepted in final form 29 May 2009 Long-term depression (LTD) of synaptic signaling—lasting from tens of minutes to hours or longer—is a widespread form of synaptic plasticity in the brain. Neurons express diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured hippocampal neurons, the mechanism of which remains unknown. We have recently reported that autaptic neurons express both endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). We now report that activating cannabinoid CB 1 receptors is necessary for the induction of autLTD. Most surprisingly, CB 1 does not induce autLTD via the G i/o proteins typically activated by this receptor nor with G s . Rather, the requirements of presynaptic phospholipase C and filled calcium stores suggest G q . In autLTD, a 3- to 4-min activation of the receptor by the endocannabinoid 2-arachidonoyl glycerol leads to prolonged inhibition while leaving short-term inhibition (e.g., DSE) intact. autLTD requires activation of both metabo- and ionotropic glutamate receptors. autLTD also requires MEK/ERK activation. Under certain conditions, one or more DSE stimuli will elicit autLTD. It is becoming evident that cannabinoids mediate multiple forms of plasticity at a single synapse, stretching temporally from tens of seconds (DSE/MSE) to tens of minutes (autLTD) to hours (CB 1 desensitization). Our findings imply a remarkable flexibility for the cannabinoid signaling system whereby discrete mechanisms of CB 1 activation within a single neuron yield temporally and mechanistically distinct forms of plasticity. Address for reprint requests and other correspondence: A. Straiker, Dept. of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 (E-mail: straiker{at}indiana.edu )</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Electric Stimulation</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</subject><subject>Receptor, Cannabinoid, CB1 - genetics</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Synapses - physiology</subject><subject>Time Factors</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUMtOwzAQtBAIyuPIFeWEuKSsXwm5IEF5ShVICLharmM3rlI72AnQv8eIh-CyK83MzuwuQvsYxhhzcrxwYwBSFGMCUK2hUcJIjnl1so5GiSA5hbLcQtsxLgCg5EA20RauWMVSGaHniXROzqzzts4m5zh70Ep3vQ_5he60q7Xrs6l38_xRh2WWsKBjtN5l1mVnQy-73qrs8l3ZXqahVXanh-Bd3EUbRrZR7333HfR0dfk4ucmn99e3k7Np3jAgfc6oMabSdckxlpiWwCpTc8ZNWSmjiNKcQkE4A1UYaaihVFVQm3QRmQEYoDvo9Mu3G2ZLXau0bpCt6IJdyrASXlrxn3G2EXP_KkhJGGUsGRx-GwT_MujYi6WNSretdNoPURQlZwWFz6SDv0m_ET-vTIKjL0Fj582bDVp0zSq9qvXzlVg4gYEIIjAugH4AEvmE0g</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Kellogg, Ryan</creator><creator>Mackie, Ken</creator><creator>Straiker, Alex</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons</title><author>Kellogg, Ryan ; Mackie, Ken ; Straiker, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h402t-43fff9ed7511a137049fd545f79cfc2ce53062540c6faf3f33c90df0772b00f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Electric Stimulation</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</topic><topic>Receptor, Cannabinoid, CB1 - genetics</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Synapses - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellogg, Ryan</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Straiker, Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellogg, Ryan</au><au>Mackie, Ken</au><au>Straiker, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>102</volume><issue>2</issue><spage>1160</spage><epage>1171</epage><pages>1160-1171</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Department of Anesthesiology, University of Washington, Seattle, Washington; and 2 Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana Submitted 25 March 2009; accepted in final form 29 May 2009 Long-term depression (LTD) of synaptic signaling—lasting from tens of minutes to hours or longer—is a widespread form of synaptic plasticity in the brain. Neurons express diverse forms of LTD, including autaptic LTD (autLTD) observed in cultured hippocampal neurons, the mechanism of which remains unknown. We have recently reported that autaptic neurons express both endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). We now report that activating cannabinoid CB 1 receptors is necessary for the induction of autLTD. Most surprisingly, CB 1 does not induce autLTD via the G i/o proteins typically activated by this receptor nor with G s . Rather, the requirements of presynaptic phospholipase C and filled calcium stores suggest G q . In autLTD, a 3- to 4-min activation of the receptor by the endocannabinoid 2-arachidonoyl glycerol leads to prolonged inhibition while leaving short-term inhibition (e.g., DSE) intact. autLTD requires activation of both metabo- and ionotropic glutamate receptors. autLTD also requires MEK/ERK activation. Under certain conditions, one or more DSE stimuli will elicit autLTD. It is becoming evident that cannabinoids mediate multiple forms of plasticity at a single synapse, stretching temporally from tens of seconds (DSE/MSE) to tens of minutes (autLTD) to hours (CB 1 desensitization). Our findings imply a remarkable flexibility for the cannabinoid signaling system whereby discrete mechanisms of CB 1 activation within a single neuron yield temporally and mechanistically distinct forms of plasticity. Address for reprint requests and other correspondence: A. Straiker, Dept. of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 (E-mail: straiker{at}indiana.edu )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>19494194</pmid><doi>10.1152/jn.00266.2009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2009-08, Vol.102 (2), p.1160-1171
issn 0022-3077
1522-1598
language eng
recordid cdi_pubmed_primary_19494194
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis of Variance
Animals
Cells, Cultured
Electric Stimulation
Excitatory Postsynaptic Potentials - physiology
Extracellular Signal-Regulated MAP Kinases - metabolism
Hippocampus - physiology
Long-Term Synaptic Depression - physiology
MAP Kinase Kinase Kinases - metabolism
Mice
Mice, Knockout
Neurons - physiology
Patch-Clamp Techniques
Receptor, Cannabinoid, CB1 - antagonists & inhibitors
Receptor, Cannabinoid, CB1 - genetics
Receptor, Cannabinoid, CB1 - metabolism
Receptors, Glutamate - metabolism
Synapses - physiology
Time Factors
title Cannabinoid CB1 Receptor-Dependent Long-Term Depression in Autaptic Excitatory Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20CB1%20Receptor-Dependent%20Long-Term%20Depression%20in%20Autaptic%20Excitatory%20Neurons&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Kellogg,%20Ryan&rft.date=2009-08-01&rft.volume=102&rft.issue=2&rft.spage=1160&rft.epage=1171&rft.pages=1160-1171&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00266.2009&rft_dat=%3Cproquest_pubme%3E67546300%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67546300&rft_id=info:pmid/19494194&rfr_iscdi=true