Transistor analogs of emergent iono-neuronal dynamics
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die are...
Gespeichert in:
Veröffentlicht in: | HFSP Journal 2008-06, Vol.2 (3), p.156-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 3 |
container_start_page | 156 |
container_title | HFSP Journal |
container_volume | 2 |
creator | Rachmuth, Guy Poon, Chi-Sang |
description | Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications. |
doi_str_mv | 10.2976/1.2905393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19404469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733098471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-95b4aab6b1af0d196e462b44041ab78deab06c86005cbd8b44a904b0beebbb3</originalsourceid><addsrcrecordid>eNplkE9LxDAUxIMo7rp68AtIb-KhmrRJ2lwEWfwHCx7cg7fw0qZrpE3WpFX22xvZsiqe5sH8mDcMQqcEX2ai4FckCma5yPfQlAjG0gyzl_3dzcsJOgrhDWPGOSWHaEIExZRyMUVs6cEGE3rnE7DQulVIXJPoTvuVtn1inHWp1YN30UzqjYXOVOEYHTTQBn0y6gw9390u5w_p4un-cX6zSCtKRJ8KpiiA4opAg2siuKY8UzT-JqCKstagMK9KHotVqi6jAwJThZXWSql8hq63qetBdbquYh8PrVx704HfSAdG_nWseZUr9yEzThnjLAacjwHevQ869LIzodJtC1a7Icgiz7EoaUEiebElK-9C8LrZfSFYfm8siRw3juzZ71o_5DhqBOgWMLZxvoNP59ta9rBpnW_i3JUJMv-f-wXBLIn1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733098471</pqid></control><display><type>article</type><title>Transistor analogs of emergent iono-neuronal dynamics</title><source>PubMed Central</source><creator>Rachmuth, Guy ; Poon, Chi-Sang</creator><creatorcontrib>Rachmuth, Guy ; Poon, Chi-Sang</creatorcontrib><description>Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.</description><identifier>ISSN: 1955-2068</identifier><identifier>EISSN: 1955-205X</identifier><identifier>DOI: 10.2976/1.2905393</identifier><identifier>PMID: 19404469</identifier><language>eng</language><publisher>France: Taylor & Francis Group</publisher><ispartof>HFSP Journal, 2008-06, Vol.2 (3), p.156-166</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><rights>Copyright © 2008 HFSP Publishing 2008 HFSP Publishing</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-95b4aab6b1af0d196e462b44041ab78deab06c86005cbd8b44a904b0beebbb3</citedby><cites>FETCH-LOGICAL-c419t-95b4aab6b1af0d196e462b44041ab78deab06c86005cbd8b44a904b0beebbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645565/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645565/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19404469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachmuth, Guy</creatorcontrib><creatorcontrib>Poon, Chi-Sang</creatorcontrib><title>Transistor analogs of emergent iono-neuronal dynamics</title><title>HFSP Journal</title><addtitle>HFSP J</addtitle><description>Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.</description><issn>1955-2068</issn><issn>1955-205X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNplkE9LxDAUxIMo7rp68AtIb-KhmrRJ2lwEWfwHCx7cg7fw0qZrpE3WpFX22xvZsiqe5sH8mDcMQqcEX2ai4FckCma5yPfQlAjG0gyzl_3dzcsJOgrhDWPGOSWHaEIExZRyMUVs6cEGE3rnE7DQulVIXJPoTvuVtn1inHWp1YN30UzqjYXOVOEYHTTQBn0y6gw9390u5w_p4un-cX6zSCtKRJ8KpiiA4opAg2siuKY8UzT-JqCKstagMK9KHotVqi6jAwJThZXWSql8hq63qetBdbquYh8PrVx704HfSAdG_nWseZUr9yEzThnjLAacjwHevQ869LIzodJtC1a7Icgiz7EoaUEiebElK-9C8LrZfSFYfm8siRw3juzZ71o_5DhqBOgWMLZxvoNP59ta9rBpnW_i3JUJMv-f-wXBLIn1</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Rachmuth, Guy</creator><creator>Poon, Chi-Sang</creator><general>Taylor & Francis Group</general><general>HFSP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080601</creationdate><title>Transistor analogs of emergent iono-neuronal dynamics</title><author>Rachmuth, Guy ; Poon, Chi-Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-95b4aab6b1af0d196e462b44041ab78deab06c86005cbd8b44a904b0beebbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rachmuth, Guy</creatorcontrib><creatorcontrib>Poon, Chi-Sang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>HFSP Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachmuth, Guy</au><au>Poon, Chi-Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transistor analogs of emergent iono-neuronal dynamics</atitle><jtitle>HFSP Journal</jtitle><addtitle>HFSP J</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>2</volume><issue>3</issue><spage>156</spage><epage>166</epage><pages>156-166</pages><issn>1955-2068</issn><eissn>1955-205X</eissn><abstract>Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.</abstract><cop>France</cop><pub>Taylor & Francis Group</pub><pmid>19404469</pmid><doi>10.2976/1.2905393</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1955-2068 |
ispartof | HFSP Journal, 2008-06, Vol.2 (3), p.156-166 |
issn | 1955-2068 1955-205X |
language | eng |
recordid | cdi_pubmed_primary_19404469 |
source | PubMed Central |
title | Transistor analogs of emergent iono-neuronal dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transistor%20analogs%20of%20emergent%20iono-neuronal%20dynamics&rft.jtitle=HFSP%20Journal&rft.au=Rachmuth,%20Guy&rft.date=2008-06-01&rft.volume=2&rft.issue=3&rft.spage=156&rft.epage=166&rft.pages=156-166&rft.issn=1955-2068&rft.eissn=1955-205X&rft_id=info:doi/10.2976/1.2905393&rft_dat=%3Cproquest_pubme%3E733098471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733098471&rft_id=info:pmid/19404469&rfr_iscdi=true |