A Novel Template Reduction Approach for the K-Nearest Neighbor Method
The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural networks 2009-05, Vol.20 (5), p.890-896 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 5 |
container_start_page | 890 |
container_title | IEEE transactions on neural networks |
container_volume | 20 |
creator | Fayed, H.A. Atiya, A.F. |
description | The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm. |
doi_str_mv | 10.1109/TNN.2009.2018547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_19389693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4838117</ieee_id><sourcerecordid>1671263270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoTqd3QZBeFC-deUnaJMcx5g-cFWSeS5q-2kq3zqYV_O_NWJk3L0l4-bzH930IuQA6AaD6bpkkE0ap9geoSMgDcgJaQOhL_NC_qYhCzZgckVPnPikFEdH4mIxAc6VjzU_IfBokzTfWwRJXm9p0GLxh3tuuatbBdLNpG2PLoGjaoCsxeA4TNC26Lkiw-igzX37BrmzyM3JUmNrh-XCPyfv9fDl7DBevD0-z6SK0QsRdaDnySAGCQG6NYDqXORdCMsp1JNEopaKCWQmUx1HGaFYYS6UtFMTGIgc-Jje7uT7YV--DpKvKWaxrs8amd2ksQQkO0oO3_4LgSRZzJqlH6Q61beNci0W6aauVaX9SoOnWcuotp1vL6WDZt1wN0_tshflfw6DVA9cDYJw1ddGata3cnmMgtymZ5y53XIWI-2-huAK_xC8wqYsX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671263270</pqid></control><display><type>article</type><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><source>IEEE</source><creator>Fayed, H.A. ; Atiya, A.F.</creator><creatorcontrib>Fayed, H.A. ; Atiya, A.F.</creatorcontrib><description>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/TNN.2009.2018547</identifier><identifier>PMID: 19389693</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Applied sciences ; Artificial intelligence ; Boundaries ; Cellular neural networks ; Chains ; Classification ; Classification algorithms ; Computation ; Computer science; control theory; systems ; Condensing ; Connectionism. Neural networks ; cross validation ; Design engineering ; editing ; Exact sciences and technology ; K -nearest neighbor (KNN) ; Layout ; Mathematics ; Medical diagnosis ; Nearest neighbor searches ; Neural networks ; Pattern classification ; Prototypes ; Satellites ; template reduction</subject><ispartof>IEEE transactions on neural networks, 2009-05, Vol.20 (5), p.890-896</ispartof><rights>2009 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</citedby><cites>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4838117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4838117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21743172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fayed, H.A.</creatorcontrib><creatorcontrib>Atiya, A.F.</creatorcontrib><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Cellular neural networks</subject><subject>Chains</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Condensing</subject><subject>Connectionism. Neural networks</subject><subject>cross validation</subject><subject>Design engineering</subject><subject>editing</subject><subject>Exact sciences and technology</subject><subject>K -nearest neighbor (KNN)</subject><subject>Layout</subject><subject>Mathematics</subject><subject>Medical diagnosis</subject><subject>Nearest neighbor searches</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Prototypes</subject><subject>Satellites</subject><subject>template reduction</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAUx4MoTqd3QZBeFC-deUnaJMcx5g-cFWSeS5q-2kq3zqYV_O_NWJk3L0l4-bzH930IuQA6AaD6bpkkE0ap9geoSMgDcgJaQOhL_NC_qYhCzZgckVPnPikFEdH4mIxAc6VjzU_IfBokzTfWwRJXm9p0GLxh3tuuatbBdLNpG2PLoGjaoCsxeA4TNC26Lkiw-igzX37BrmzyM3JUmNrh-XCPyfv9fDl7DBevD0-z6SK0QsRdaDnySAGCQG6NYDqXORdCMsp1JNEopaKCWQmUx1HGaFYYS6UtFMTGIgc-Jje7uT7YV--DpKvKWaxrs8amd2ksQQkO0oO3_4LgSRZzJqlH6Q61beNci0W6aauVaX9SoOnWcuotp1vL6WDZt1wN0_tshflfw6DVA9cDYJw1ddGata3cnmMgtymZ5y53XIWI-2-huAK_xC8wqYsX</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fayed, H.A.</creator><creator>Atiya, A.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><author>Fayed, H.A. ; Atiya, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Cellular neural networks</topic><topic>Chains</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Condensing</topic><topic>Connectionism. Neural networks</topic><topic>cross validation</topic><topic>Design engineering</topic><topic>editing</topic><topic>Exact sciences and technology</topic><topic>K -nearest neighbor (KNN)</topic><topic>Layout</topic><topic>Mathematics</topic><topic>Medical diagnosis</topic><topic>Nearest neighbor searches</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Prototypes</topic><topic>Satellites</topic><topic>template reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Fayed, H.A.</creatorcontrib><creatorcontrib>Atiya, A.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fayed, H.A.</au><au>Atiya, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>890</spage><epage>896</epage><pages>890-896</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19389693</pmid><doi>10.1109/TNN.2009.2018547</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 2009-05, Vol.20 (5), p.890-896 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_pubmed_primary_19389693 |
source | IEEE |
subjects | Accuracy Algorithms Applied sciences Artificial intelligence Boundaries Cellular neural networks Chains Classification Classification algorithms Computation Computer science control theory systems Condensing Connectionism. Neural networks cross validation Design engineering editing Exact sciences and technology K -nearest neighbor (KNN) Layout Mathematics Medical diagnosis Nearest neighbor searches Neural networks Pattern classification Prototypes Satellites template reduction |
title | A Novel Template Reduction Approach for the K-Nearest Neighbor Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Template%20Reduction%20Approach%20for%20the%20K-Nearest%20Neighbor%20Method&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Fayed,%20H.A.&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=890&rft.epage=896&rft.pages=890-896&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2009.2018547&rft_dat=%3Cproquest_RIE%3E1671263270%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671263270&rft_id=info:pmid/19389693&rft_ieee_id=4838117&rfr_iscdi=true |