A Novel Template Reduction Approach for the K-Nearest Neighbor Method

The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 2009-05, Vol.20 (5), p.890-896
Hauptverfasser: Fayed, H.A., Atiya, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 5
container_start_page 890
container_title IEEE transactions on neural networks
container_volume 20
creator Fayed, H.A.
Atiya, A.F.
description The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.
doi_str_mv 10.1109/TNN.2009.2018547
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_19389693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4838117</ieee_id><sourcerecordid>1671263270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoTqd3QZBeFC-deUnaJMcx5g-cFWSeS5q-2kq3zqYV_O_NWJk3L0l4-bzH930IuQA6AaD6bpkkE0ap9geoSMgDcgJaQOhL_NC_qYhCzZgckVPnPikFEdH4mIxAc6VjzU_IfBokzTfWwRJXm9p0GLxh3tuuatbBdLNpG2PLoGjaoCsxeA4TNC26Lkiw-igzX37BrmzyM3JUmNrh-XCPyfv9fDl7DBevD0-z6SK0QsRdaDnySAGCQG6NYDqXORdCMsp1JNEopaKCWQmUx1HGaFYYS6UtFMTGIgc-Jje7uT7YV--DpKvKWaxrs8amd2ksQQkO0oO3_4LgSRZzJqlH6Q61beNci0W6aauVaX9SoOnWcuotp1vL6WDZt1wN0_tshflfw6DVA9cDYJw1ddGata3cnmMgtymZ5y53XIWI-2-huAK_xC8wqYsX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671263270</pqid></control><display><type>article</type><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><source>IEEE</source><creator>Fayed, H.A. ; Atiya, A.F.</creator><creatorcontrib>Fayed, H.A. ; Atiya, A.F.</creatorcontrib><description>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/TNN.2009.2018547</identifier><identifier>PMID: 19389693</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Applied sciences ; Artificial intelligence ; Boundaries ; Cellular neural networks ; Chains ; Classification ; Classification algorithms ; Computation ; Computer science; control theory; systems ; Condensing ; Connectionism. Neural networks ; cross validation ; Design engineering ; editing ; Exact sciences and technology ; K -nearest neighbor (KNN) ; Layout ; Mathematics ; Medical diagnosis ; Nearest neighbor searches ; Neural networks ; Pattern classification ; Prototypes ; Satellites ; template reduction</subject><ispartof>IEEE transactions on neural networks, 2009-05, Vol.20 (5), p.890-896</ispartof><rights>2009 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</citedby><cites>FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4838117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4838117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21743172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fayed, H.A.</creatorcontrib><creatorcontrib>Atiya, A.F.</creatorcontrib><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Cellular neural networks</subject><subject>Chains</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Condensing</subject><subject>Connectionism. Neural networks</subject><subject>cross validation</subject><subject>Design engineering</subject><subject>editing</subject><subject>Exact sciences and technology</subject><subject>K -nearest neighbor (KNN)</subject><subject>Layout</subject><subject>Mathematics</subject><subject>Medical diagnosis</subject><subject>Nearest neighbor searches</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Prototypes</subject><subject>Satellites</subject><subject>template reduction</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM9LwzAUx4MoTqd3QZBeFC-deUnaJMcx5g-cFWSeS5q-2kq3zqYV_O_NWJk3L0l4-bzH930IuQA6AaD6bpkkE0ap9geoSMgDcgJaQOhL_NC_qYhCzZgckVPnPikFEdH4mIxAc6VjzU_IfBokzTfWwRJXm9p0GLxh3tuuatbBdLNpG2PLoGjaoCsxeA4TNC26Lkiw-igzX37BrmzyM3JUmNrh-XCPyfv9fDl7DBevD0-z6SK0QsRdaDnySAGCQG6NYDqXORdCMsp1JNEopaKCWQmUx1HGaFYYS6UtFMTGIgc-Jje7uT7YV--DpKvKWaxrs8amd2ksQQkO0oO3_4LgSRZzJqlH6Q61beNci0W6aauVaX9SoOnWcuotp1vL6WDZt1wN0_tshflfw6DVA9cDYJw1ddGata3cnmMgtymZ5y53XIWI-2-huAK_xC8wqYsX</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fayed, H.A.</creator><creator>Atiya, A.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20090501</creationdate><title>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</title><author>Fayed, H.A. ; Atiya, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c3e3581e14e3ca429d7d3447203957ea8885f2c710365b20bfac07cf816ace313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Cellular neural networks</topic><topic>Chains</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Condensing</topic><topic>Connectionism. Neural networks</topic><topic>cross validation</topic><topic>Design engineering</topic><topic>editing</topic><topic>Exact sciences and technology</topic><topic>K -nearest neighbor (KNN)</topic><topic>Layout</topic><topic>Mathematics</topic><topic>Medical diagnosis</topic><topic>Nearest neighbor searches</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Prototypes</topic><topic>Satellites</topic><topic>template reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Fayed, H.A.</creatorcontrib><creatorcontrib>Atiya, A.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fayed, H.A.</au><au>Atiya, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Template Reduction Approach for the K-Nearest Neighbor Method</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>890</spage><epage>896</epage><pages>890-896</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>The K -nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19389693</pmid><doi>10.1109/TNN.2009.2018547</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 2009-05, Vol.20 (5), p.890-896
issn 1045-9227
1941-0093
language eng
recordid cdi_pubmed_primary_19389693
source IEEE
subjects Accuracy
Algorithms
Applied sciences
Artificial intelligence
Boundaries
Cellular neural networks
Chains
Classification
Classification algorithms
Computation
Computer science
control theory
systems
Condensing
Connectionism. Neural networks
cross validation
Design engineering
editing
Exact sciences and technology
K -nearest neighbor (KNN)
Layout
Mathematics
Medical diagnosis
Nearest neighbor searches
Neural networks
Pattern classification
Prototypes
Satellites
template reduction
title A Novel Template Reduction Approach for the K-Nearest Neighbor Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Template%20Reduction%20Approach%20for%20the%20K-Nearest%20Neighbor%20Method&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Fayed,%20H.A.&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=890&rft.epage=896&rft.pages=890-896&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2009.2018547&rft_dat=%3Cproquest_RIE%3E1671263270%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671263270&rft_id=info:pmid/19389693&rft_ieee_id=4838117&rfr_iscdi=true