O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion
Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O₂, FNR binds a [4Fe-4S]²⁺ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally activ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-03, Vol.106 (12), p.4659-4664 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4664 |
---|---|
container_issue | 12 |
container_start_page | 4659 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Jervis, Adrian J Crack, Jason C White, Gaye Artymiuk, Peter J Cheesman, Myles R Thomson, Andrew J Le Brun, Nick E Green, Jeffrey |
description | Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O₂, FNR binds a [4Fe-4S]²⁺ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O₂, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]²⁺ cluster. The reaction of the [4Fe-4S]²⁺ cluster with O₂ has been shown to proceed via a 2-step process, an O₂-dependent 1-electron oxidation to yield a [3Fe-4S]⁺ intermediate with release of 1 Fe²⁺ ion, followed by spontaneous rearrangement to the [2Fe-2S]²⁺ form with release of 1 Fe³⁺ and 2 S²⁻ ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]²⁺ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]²⁺ cluster in the presence of O₂. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron-sulfur cluster reaction with O₂ is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O₂ interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O₂ concentrations. |
doi_str_mv | 10.1073/pnas.0804943106 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_pnas_</sourceid><recordid>TN_cdi_pubmed_primary_19261852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19261852</sourcerecordid><originalsourceid>FETCH-LOGICAL-f260t-8fddf10ad6750aa03de58b23150bd25c828ddf5e3956b116a3527b4e6383de693</originalsourceid><addsrcrecordid>eNp9kUtvEzEQgC0EoqFw5gY-ctky49d6L0ioIlCpohKhpwpZ3l1vatisI9uJyDU_lV-CQ0tLL5xmpPnm0zwIeYlwglDzt-vJphPQIBrBEdQjMkNosFKigcdkBsDqSgsmjsizlL4DQCM1PCVH2DCFWrIZ2V_82u9pclPy2W993tEw0HztaI52Sl306-zDRAfb5RDp_PMX6hPtwpRjGEfX03ZHFy4yQVeh34w2-2n5p_2Hn1z2XTrorsTcVWLxjeZAr1jJWcmLY-tiKvLn5Mlgx-Re3MZjcjn_8PX0U3V-8fHs9P15NTAFudJD3w8Itle1BGuB907qlnGU0PZMdprpAkjHG6laRGW5ZHUrnOK6oKrhx-TdjXe9aVeu71xZwo5mHf3Kxp0J1puHlclfm2XYGqYU1OwgePWv4K7z7zUL8PoWKG-5L4MyyIxQ8qB483_CDJtxzO5nvpcNNhi7jD6ZywUD5IAKEcs8vwF2spr6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jervis, Adrian J ; Crack, Jason C ; White, Gaye ; Artymiuk, Peter J ; Cheesman, Myles R ; Thomson, Andrew J ; Le Brun, Nick E ; Green, Jeffrey</creator><creatorcontrib>Jervis, Adrian J ; Crack, Jason C ; White, Gaye ; Artymiuk, Peter J ; Cheesman, Myles R ; Thomson, Andrew J ; Le Brun, Nick E ; Green, Jeffrey</creatorcontrib><description>Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O₂, FNR binds a [4Fe-4S]²⁺ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O₂, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]²⁺ cluster. The reaction of the [4Fe-4S]²⁺ cluster with O₂ has been shown to proceed via a 2-step process, an O₂-dependent 1-electron oxidation to yield a [3Fe-4S]⁺ intermediate with release of 1 Fe²⁺ ion, followed by spontaneous rearrangement to the [2Fe-2S]²⁺ form with release of 1 Fe³⁺ and 2 S²⁻ ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]²⁺ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]²⁺ cluster in the presence of O₂. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron-sulfur cluster reaction with O₂ is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O₂ interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O₂ concentrations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804943106</identifier><identifier>PMID: 19261852</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aerobiosis ; Amino Acid Sequence ; Amino Acid Substitution ; Biological Sciences ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - metabolism ; Kinetics ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxygen - metabolism ; Phenylalanine - genetics ; Protein Stability ; Serine - metabolism ; Spectrophotometry, Ultraviolet ; Structure-Activity Relationship ; Transcription Factors - chemistry ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-03, Vol.106 (12), p.4659-4664</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660729/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19261852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jervis, Adrian J</creatorcontrib><creatorcontrib>Crack, Jason C</creatorcontrib><creatorcontrib>White, Gaye</creatorcontrib><creatorcontrib>Artymiuk, Peter J</creatorcontrib><creatorcontrib>Cheesman, Myles R</creatorcontrib><creatorcontrib>Thomson, Andrew J</creatorcontrib><creatorcontrib>Le Brun, Nick E</creatorcontrib><creatorcontrib>Green, Jeffrey</creatorcontrib><title>O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O₂, FNR binds a [4Fe-4S]²⁺ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O₂, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]²⁺ cluster. The reaction of the [4Fe-4S]²⁺ cluster with O₂ has been shown to proceed via a 2-step process, an O₂-dependent 1-electron oxidation to yield a [3Fe-4S]⁺ intermediate with release of 1 Fe²⁺ ion, followed by spontaneous rearrangement to the [2Fe-2S]²⁺ form with release of 1 Fe³⁺ and 2 S²⁻ ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]²⁺ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]²⁺ cluster in the presence of O₂. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron-sulfur cluster reaction with O₂ is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O₂ interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O₂ concentrations.</description><subject>Aerobiosis</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Biological Sciences</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oxygen - metabolism</subject><subject>Phenylalanine - genetics</subject><subject>Protein Stability</subject><subject>Serine - metabolism</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Structure-Activity Relationship</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEQgC0EoqFw5gY-ctky49d6L0ioIlCpohKhpwpZ3l1vatisI9uJyDU_lV-CQ0tLL5xmpPnm0zwIeYlwglDzt-vJphPQIBrBEdQjMkNosFKigcdkBsDqSgsmjsizlL4DQCM1PCVH2DCFWrIZ2V_82u9pclPy2W993tEw0HztaI52Sl306-zDRAfb5RDp_PMX6hPtwpRjGEfX03ZHFy4yQVeh34w2-2n5p_2Hn1z2XTrorsTcVWLxjeZAr1jJWcmLY-tiKvLn5Mlgx-Re3MZjcjn_8PX0U3V-8fHs9P15NTAFudJD3w8Itle1BGuB907qlnGU0PZMdprpAkjHG6laRGW5ZHUrnOK6oKrhx-TdjXe9aVeu71xZwo5mHf3Kxp0J1puHlclfm2XYGqYU1OwgePWv4K7z7zUL8PoWKG-5L4MyyIxQ8qB483_CDJtxzO5nvpcNNhi7jD6ZywUD5IAKEcs8vwF2spr6</recordid><startdate>20090324</startdate><enddate>20090324</enddate><creator>Jervis, Adrian J</creator><creator>Crack, Jason C</creator><creator>White, Gaye</creator><creator>Artymiuk, Peter J</creator><creator>Cheesman, Myles R</creator><creator>Thomson, Andrew J</creator><creator>Le Brun, Nick E</creator><creator>Green, Jeffrey</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20090324</creationdate><title>O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion</title><author>Jervis, Adrian J ; Crack, Jason C ; White, Gaye ; Artymiuk, Peter J ; Cheesman, Myles R ; Thomson, Andrew J ; Le Brun, Nick E ; Green, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f260t-8fddf10ad6750aa03de58b23150bd25c828ddf5e3956b116a3527b4e6383de693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerobiosis</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Biological Sciences</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oxygen - metabolism</topic><topic>Phenylalanine - genetics</topic><topic>Protein Stability</topic><topic>Serine - metabolism</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Structure-Activity Relationship</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jervis, Adrian J</creatorcontrib><creatorcontrib>Crack, Jason C</creatorcontrib><creatorcontrib>White, Gaye</creatorcontrib><creatorcontrib>Artymiuk, Peter J</creatorcontrib><creatorcontrib>Cheesman, Myles R</creatorcontrib><creatorcontrib>Thomson, Andrew J</creatorcontrib><creatorcontrib>Le Brun, Nick E</creatorcontrib><creatorcontrib>Green, Jeffrey</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jervis, Adrian J</au><au>Crack, Jason C</au><au>White, Gaye</au><au>Artymiuk, Peter J</au><au>Cheesman, Myles R</au><au>Thomson, Andrew J</au><au>Le Brun, Nick E</au><au>Green, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-03-24</date><risdate>2009</risdate><volume>106</volume><issue>12</issue><spage>4659</spage><epage>4664</epage><pages>4659-4664</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O₂, FNR binds a [4Fe-4S]²⁺ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O₂, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]²⁺ cluster. The reaction of the [4Fe-4S]²⁺ cluster with O₂ has been shown to proceed via a 2-step process, an O₂-dependent 1-electron oxidation to yield a [3Fe-4S]⁺ intermediate with release of 1 Fe²⁺ ion, followed by spontaneous rearrangement to the [2Fe-2S]²⁺ form with release of 1 Fe³⁺ and 2 S²⁻ ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]²⁺ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]²⁺ cluster in the presence of O₂. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron-sulfur cluster reaction with O₂ is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O₂ interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O₂ concentrations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19261852</pmid><doi>10.1073/pnas.0804943106</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-03, Vol.106 (12), p.4659-4664 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_19261852 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aerobiosis Amino Acid Sequence Amino Acid Substitution Biological Sciences Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Iron-Sulfur Proteins - chemistry Iron-Sulfur Proteins - metabolism Kinetics Ligands Models, Molecular Molecular Sequence Data Oxygen - metabolism Phenylalanine - genetics Protein Stability Serine - metabolism Spectrophotometry, Ultraviolet Structure-Activity Relationship Transcription Factors - chemistry Transcription Factors - metabolism |
title | O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O%E2%82%82%20sensitivity%20of%20the%20transcription%20factor%20FNR%20is%20controlled%20by%20Ser24%20modulating%20the%20kinetics%20of%20%5B4Fe-4S%5D%20to%20%5B2Fe-2S%5D%20conversion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jervis,%20Adrian%20J&rft.date=2009-03-24&rft.volume=106&rft.issue=12&rft.spage=4659&rft.epage=4664&rft.pages=4659-4664&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804943106&rft_dat=%3Cpubmed_pnas_%3E19261852%3C/pubmed_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19261852&rfr_iscdi=true |