A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system

We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2009-02, Vol.54 (4), p.1061-1072
Hauptverfasser: Quan, E, Lalush, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue 4
container_start_page 1061
container_title Physics in medicine & biology
container_volume 54
creator Quan, E
Lalush, D S
description We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.
doi_str_mv 10.1088/0031-9155/54/4/016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19168936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66859260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-69c90023942506966d05b8da47f634e14439a08d9ad8a7b0bbce1c4a4e69f3763</originalsourceid><addsrcrecordid>eNqNkM9LwzAUgIMobk7_AQ-Sk-AhLmnStDmO4S8YeJnnkLavLtI2NUmH--_t2NCDF0-PB9_7eHwIXTN6z2iezynljCiWpvNUzMWcMnmCpoxLRmQq6Sma_gATdBHCB6WM5Yk4RxOmmMwVl1O0WeDahAgeO1-Bh4qEoQgQcem6LXxh07w7b-OmxbXz2I6giXYL2MMIhOiHMlrXYdthg72LZr-R2gPg1pbekeUah93oby_RWW2aAFfHOUNvjw_r5TNZvT69LBcrUvKMRyJVqShNuBJJSqWSsqJpkVdGZLXkApgQXBmaV8pUuckKWhQlsFIYAVLVPJN8hm4P3t67zwFC1K0NJTSN6cANQUuZpyqRdASTAzi-GYKHWvfetsbvNKN631fv8-l9Pp0KLfTYdzy6OdqHooXq9-QYdATIAbCu_5_w7i__l9N9VfNv9cqREg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66859260</pqid></control><display><type>article</type><title>A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Quan, E ; Lalush, D S</creator><creatorcontrib>Quan, E ; Lalush, D S</creatorcontrib><description>We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/54/4/016</identifier><identifier>PMID: 19168936</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Imaging, Three-Dimensional - methods ; Pattern Recognition, Automated - methods ; Phantoms, Imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, X-Ray Computed - methods</subject><ispartof>Physics in medicine &amp; biology, 2009-02, Vol.54 (4), p.1061-1072</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-69c90023942506966d05b8da47f634e14439a08d9ad8a7b0bbce1c4a4e69f3763</citedby><cites>FETCH-LOGICAL-c373t-69c90023942506966d05b8da47f634e14439a08d9ad8a7b0bbce1c4a4e69f3763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/54/4/016/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19168936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quan, E</creatorcontrib><creatorcontrib>Lalush, D S</creatorcontrib><title>A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phantoms, Imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM9LwzAUgIMobk7_AQ-Sk-AhLmnStDmO4S8YeJnnkLavLtI2NUmH--_t2NCDF0-PB9_7eHwIXTN6z2iezynljCiWpvNUzMWcMnmCpoxLRmQq6Sma_gATdBHCB6WM5Yk4RxOmmMwVl1O0WeDahAgeO1-Bh4qEoQgQcem6LXxh07w7b-OmxbXz2I6giXYL2MMIhOiHMlrXYdthg72LZr-R2gPg1pbekeUah93oby_RWW2aAFfHOUNvjw_r5TNZvT69LBcrUvKMRyJVqShNuBJJSqWSsqJpkVdGZLXkApgQXBmaV8pUuckKWhQlsFIYAVLVPJN8hm4P3t67zwFC1K0NJTSN6cANQUuZpyqRdASTAzi-GYKHWvfetsbvNKN631fv8-l9Pp0KLfTYdzy6OdqHooXq9-QYdATIAbCu_5_w7i__l9N9VfNv9cqREg</recordid><startdate>20090221</startdate><enddate>20090221</enddate><creator>Quan, E</creator><creator>Lalush, D S</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090221</creationdate><title>A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system</title><author>Quan, E ; Lalush, D S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-69c90023942506966d05b8da47f634e14439a08d9ad8a7b0bbce1c4a4e69f3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phantoms, Imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, E</creatorcontrib><creatorcontrib>Lalush, D S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, E</au><au>Lalush, D S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2009-02-21</date><risdate>2009</risdate><volume>54</volume><issue>4</issue><spage>1061</spage><epage>1072</epage><pages>1061-1072</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>19168936</pmid><doi>10.1088/0031-9155/54/4/016</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2009-02, Vol.54 (4), p.1061-1072
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_19168936
source MEDLINE; Institute of Physics Journals
subjects Algorithms
Artificial Intelligence
Imaging, Three-Dimensional - methods
Pattern Recognition, Automated - methods
Phantoms, Imaging
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Tomography, X-Ray Computed - methods
title A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20faster%20ordered-subset%20convex%20algorithm%20for%20iterative%20reconstruction%20in%20a%20rotation-free%20micro-CT%20system&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Quan,%20E&rft.date=2009-02-21&rft.volume=54&rft.issue=4&rft.spage=1061&rft.epage=1072&rft.pages=1061-1072&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/54/4/016&rft_dat=%3Cproquest_pubme%3E66859260%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66859260&rft_id=info:pmid/19168936&rfr_iscdi=true