Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images

Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2008-11, Vol.35 (11), p.5043-5053
Hauptverfasser: Richard, Samuel, Siewerdsen, Jeffrey H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5053
container_issue 11
container_start_page 5043
container_title Medical physics (Lancaster)
container_volume 35
creator Richard, Samuel
Siewerdsen, Jeffrey H.
description Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index ( d ′ ) and area under the receiver operating characteristic ( A Z ) . Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A Z as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.
doi_str_mv 10.1118/1.2988161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19070238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69892394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMo7rh64R-QgCAodM1X2-RmQQa_YEUv9Dqk6elMtE1q0o47_97Mtuh6sV4lnPPkPefNi9BTSi4opfI1vWBKSlrRe2jDRM0LwYi6jzaEKFEwQcoz9Cil74SQipfkITqjitSEcblB19swjCa6FDwOHR5CCz02vsX7eTC51CSIB4h4hNiFmEsWcL7gFiawk8uvTnDrko1ucN7clCaTfiQ8J-d3uJ1NX4CHuDvi6yKaI3aD2UF6jB50pk_wZD3P0bd3b79uPxRXn99_3L65KmxZl7SoKkoaIwR0nQRmqOCtIlRIWeZ-V9qOVRXhZW1V1yhrGJFEkIaDZDw7bBU_R5eL7jg3A7QW_BRNr8e8rolHHYzT_3a82-tdOGhW1bxUVRZ4vgiENDmdrMvG9zZ4n_1rlj-6ZCXP1It1TAw_Z0iTHvKfQN8bD2FOulJSMa5EBl8uoI0hpQjdn1Uo0ac0NdVrmpl9dnv3v-QaXwaKBfjlejjeraQ_fVkFXy38ycZNVv-dfid8CPGW-Nh2_DdhdcWB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69892394</pqid></control><display><type>article</type><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Richard, Samuel ; Siewerdsen, Jeffrey H.</creator><creatorcontrib>Richard, Samuel ; Siewerdsen, Jeffrey H.</creatorcontrib><description>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index ( d ′ ) and area under the receiver operating characteristic ( A Z ) . Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A Z as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>EISSN: 0094-2405</identifier><identifier>DOI: 10.1118/1.2988161</identifier><identifier>PMID: 19070238</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>1/f noise ; ALGORITHMS ; AUTOMATION ; BACKGROUND NOISE ; biomedical measurement ; bone ; Bone and Bones - radiation effects ; COMPARATIVE EVALUATIONS ; Computer‐aided diagnosis ; DETECTION ; diagnostic radiography ; FOURIER ANALYSIS ; Humans ; image denoising ; Image sensors ; image texture ; medical diagnostic computing ; Medical image noise ; Medical image quality ; Medical imaging ; Models, Biological ; Modulation transfer functions ; Noise ; Observation ; orthopaedics ; Quantum noise ; Radiation Dosage ; Radiation Imaging Physics ; Radiography ; Radiography - methods ; RADIOLOGY AND NUCLEAR MEDICINE ; sensitivity analysis ; Spatial analysis ; Spatial filtering ; Systems analysis ; X RADIATION ; X-Rays</subject><ispartof>Medical physics (Lancaster), 2008-11, Vol.35 (11), p.5043-5053</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2008 American Association of Physicists in Medicine</rights><rights>Copyright © 2008 American Association of Physicists in Medicine 2008 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</citedby><cites>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2988161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2988161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19070238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22095253$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, Samuel</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index ( d ′ ) and area under the receiver operating characteristic ( A Z ) . Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A Z as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</description><subject>1/f noise</subject><subject>ALGORITHMS</subject><subject>AUTOMATION</subject><subject>BACKGROUND NOISE</subject><subject>biomedical measurement</subject><subject>bone</subject><subject>Bone and Bones - radiation effects</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer‐aided diagnosis</subject><subject>DETECTION</subject><subject>diagnostic radiography</subject><subject>FOURIER ANALYSIS</subject><subject>Humans</subject><subject>image denoising</subject><subject>Image sensors</subject><subject>image texture</subject><subject>medical diagnostic computing</subject><subject>Medical image noise</subject><subject>Medical image quality</subject><subject>Medical imaging</subject><subject>Models, Biological</subject><subject>Modulation transfer functions</subject><subject>Noise</subject><subject>Observation</subject><subject>orthopaedics</subject><subject>Quantum noise</subject><subject>Radiation Dosage</subject><subject>Radiation Imaging Physics</subject><subject>Radiography</subject><subject>Radiography - methods</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>sensitivity analysis</subject><subject>Spatial analysis</subject><subject>Spatial filtering</subject><subject>Systems analysis</subject><subject>X RADIATION</subject><subject>X-Rays</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>0094-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1DAUhoMo7rh64R-QgCAodM1X2-RmQQa_YEUv9Dqk6elMtE1q0o47_97Mtuh6sV4lnPPkPefNi9BTSi4opfI1vWBKSlrRe2jDRM0LwYi6jzaEKFEwQcoz9Cil74SQipfkITqjitSEcblB19swjCa6FDwOHR5CCz02vsX7eTC51CSIB4h4hNiFmEsWcL7gFiawk8uvTnDrko1ucN7clCaTfiQ8J-d3uJ1NX4CHuDvi6yKaI3aD2UF6jB50pk_wZD3P0bd3b79uPxRXn99_3L65KmxZl7SoKkoaIwR0nQRmqOCtIlRIWeZ-V9qOVRXhZW1V1yhrGJFEkIaDZDw7bBU_R5eL7jg3A7QW_BRNr8e8rolHHYzT_3a82-tdOGhW1bxUVRZ4vgiENDmdrMvG9zZ4n_1rlj-6ZCXP1It1TAw_Z0iTHvKfQN8bD2FOulJSMa5EBl8uoI0hpQjdn1Uo0ac0NdVrmpl9dnv3v-QaXwaKBfjlejjeraQ_fVkFXy38ycZNVv-dfid8CPGW-Nh2_DdhdcWB</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Richard, Samuel</creator><creator>Siewerdsen, Jeffrey H.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><author>Richard, Samuel ; Siewerdsen, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1/f noise</topic><topic>ALGORITHMS</topic><topic>AUTOMATION</topic><topic>BACKGROUND NOISE</topic><topic>biomedical measurement</topic><topic>bone</topic><topic>Bone and Bones - radiation effects</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer‐aided diagnosis</topic><topic>DETECTION</topic><topic>diagnostic radiography</topic><topic>FOURIER ANALYSIS</topic><topic>Humans</topic><topic>image denoising</topic><topic>Image sensors</topic><topic>image texture</topic><topic>medical diagnostic computing</topic><topic>Medical image noise</topic><topic>Medical image quality</topic><topic>Medical imaging</topic><topic>Models, Biological</topic><topic>Modulation transfer functions</topic><topic>Noise</topic><topic>Observation</topic><topic>orthopaedics</topic><topic>Quantum noise</topic><topic>Radiation Dosage</topic><topic>Radiation Imaging Physics</topic><topic>Radiography</topic><topic>Radiography - methods</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>sensitivity analysis</topic><topic>Spatial analysis</topic><topic>Spatial filtering</topic><topic>Systems analysis</topic><topic>X RADIATION</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, Samuel</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, Samuel</au><au>Siewerdsen, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2008-11</date><risdate>2008</risdate><volume>35</volume><issue>11</issue><spage>5043</spage><epage>5053</epage><pages>5043-5053</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><eissn>0094-2405</eissn><coden>MPHYA6</coden><abstract>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index ( d ′ ) and area under the receiver operating characteristic ( A Z ) . Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A Z as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>19070238</pmid><doi>10.1118/1.2988161</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2008-11, Vol.35 (11), p.5043-5053
issn 0094-2405
2473-4209
0094-2405
language eng
recordid cdi_pubmed_primary_19070238
source Wiley-Blackwell Journals; MEDLINE; Alma/SFX Local Collection
subjects 1/f noise
ALGORITHMS
AUTOMATION
BACKGROUND NOISE
biomedical measurement
bone
Bone and Bones - radiation effects
COMPARATIVE EVALUATIONS
Computer‐aided diagnosis
DETECTION
diagnostic radiography
FOURIER ANALYSIS
Humans
image denoising
Image sensors
image texture
medical diagnostic computing
Medical image noise
Medical image quality
Medical imaging
Models, Biological
Modulation transfer functions
Noise
Observation
orthopaedics
Quantum noise
Radiation Dosage
Radiation Imaging Physics
Radiography
Radiography - methods
RADIOLOGY AND NUCLEAR MEDICINE
sensitivity analysis
Spatial analysis
Spatial filtering
Systems analysis
X RADIATION
X-Rays
title Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20model%20and%20human%20observer%20performance%20for%20detection%20and%20discrimination%20tasks%20using%20dual-energy%20x-ray%20images&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Richard,%20Samuel&rft.date=2008-11&rft.volume=35&rft.issue=11&rft.spage=5043&rft.epage=5053&rft.pages=5043-5053&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2988161&rft_dat=%3Cproquest_pubme%3E69892394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69892394&rft_id=info:pmid/19070238&rfr_iscdi=true