Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images
Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performanc...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2008-11, Vol.35 (11), p.5043-5053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5053 |
---|---|
container_issue | 11 |
container_start_page | 5043 |
container_title | Medical physics (Lancaster) |
container_volume | 35 |
creator | Richard, Samuel Siewerdsen, Jeffrey H. |
description | Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index
(
d
′
)
and area under the receiver operating characteristic
(
A
Z
)
. Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of
A
Z
as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance. |
doi_str_mv | 10.1118/1.2988161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_19070238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69892394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMo7rh64R-QgCAodM1X2-RmQQa_YEUv9Dqk6elMtE1q0o47_97Mtuh6sV4lnPPkPefNi9BTSi4opfI1vWBKSlrRe2jDRM0LwYi6jzaEKFEwQcoz9Cil74SQipfkITqjitSEcblB19swjCa6FDwOHR5CCz02vsX7eTC51CSIB4h4hNiFmEsWcL7gFiawk8uvTnDrko1ucN7clCaTfiQ8J-d3uJ1NX4CHuDvi6yKaI3aD2UF6jB50pk_wZD3P0bd3b79uPxRXn99_3L65KmxZl7SoKkoaIwR0nQRmqOCtIlRIWeZ-V9qOVRXhZW1V1yhrGJFEkIaDZDw7bBU_R5eL7jg3A7QW_BRNr8e8rolHHYzT_3a82-tdOGhW1bxUVRZ4vgiENDmdrMvG9zZ4n_1rlj-6ZCXP1It1TAw_Z0iTHvKfQN8bD2FOulJSMa5EBl8uoI0hpQjdn1Uo0ac0NdVrmpl9dnv3v-QaXwaKBfjlejjeraQ_fVkFXy38ycZNVv-dfid8CPGW-Nh2_DdhdcWB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69892394</pqid></control><display><type>article</type><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Richard, Samuel ; Siewerdsen, Jeffrey H.</creator><creatorcontrib>Richard, Samuel ; Siewerdsen, Jeffrey H.</creatorcontrib><description>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index
(
d
′
)
and area under the receiver operating characteristic
(
A
Z
)
. Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of
A
Z
as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>EISSN: 0094-2405</identifier><identifier>DOI: 10.1118/1.2988161</identifier><identifier>PMID: 19070238</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>1/f noise ; ALGORITHMS ; AUTOMATION ; BACKGROUND NOISE ; biomedical measurement ; bone ; Bone and Bones - radiation effects ; COMPARATIVE EVALUATIONS ; Computer‐aided diagnosis ; DETECTION ; diagnostic radiography ; FOURIER ANALYSIS ; Humans ; image denoising ; Image sensors ; image texture ; medical diagnostic computing ; Medical image noise ; Medical image quality ; Medical imaging ; Models, Biological ; Modulation transfer functions ; Noise ; Observation ; orthopaedics ; Quantum noise ; Radiation Dosage ; Radiation Imaging Physics ; Radiography ; Radiography - methods ; RADIOLOGY AND NUCLEAR MEDICINE ; sensitivity analysis ; Spatial analysis ; Spatial filtering ; Systems analysis ; X RADIATION ; X-Rays</subject><ispartof>Medical physics (Lancaster), 2008-11, Vol.35 (11), p.5043-5053</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2008 American Association of Physicists in Medicine</rights><rights>Copyright © 2008 American Association of Physicists in Medicine 2008 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</citedby><cites>FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2988161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2988161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19070238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22095253$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, Samuel</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index
(
d
′
)
and area under the receiver operating characteristic
(
A
Z
)
. Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of
A
Z
as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</description><subject>1/f noise</subject><subject>ALGORITHMS</subject><subject>AUTOMATION</subject><subject>BACKGROUND NOISE</subject><subject>biomedical measurement</subject><subject>bone</subject><subject>Bone and Bones - radiation effects</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer‐aided diagnosis</subject><subject>DETECTION</subject><subject>diagnostic radiography</subject><subject>FOURIER ANALYSIS</subject><subject>Humans</subject><subject>image denoising</subject><subject>Image sensors</subject><subject>image texture</subject><subject>medical diagnostic computing</subject><subject>Medical image noise</subject><subject>Medical image quality</subject><subject>Medical imaging</subject><subject>Models, Biological</subject><subject>Modulation transfer functions</subject><subject>Noise</subject><subject>Observation</subject><subject>orthopaedics</subject><subject>Quantum noise</subject><subject>Radiation Dosage</subject><subject>Radiation Imaging Physics</subject><subject>Radiography</subject><subject>Radiography - methods</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>sensitivity analysis</subject><subject>Spatial analysis</subject><subject>Spatial filtering</subject><subject>Systems analysis</subject><subject>X RADIATION</subject><subject>X-Rays</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>0094-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1DAUhoMo7rh64R-QgCAodM1X2-RmQQa_YEUv9Dqk6elMtE1q0o47_97Mtuh6sV4lnPPkPefNi9BTSi4opfI1vWBKSlrRe2jDRM0LwYi6jzaEKFEwQcoz9Cil74SQipfkITqjitSEcblB19swjCa6FDwOHR5CCz02vsX7eTC51CSIB4h4hNiFmEsWcL7gFiawk8uvTnDrko1ucN7clCaTfiQ8J-d3uJ1NX4CHuDvi6yKaI3aD2UF6jB50pk_wZD3P0bd3b79uPxRXn99_3L65KmxZl7SoKkoaIwR0nQRmqOCtIlRIWeZ-V9qOVRXhZW1V1yhrGJFEkIaDZDw7bBU_R5eL7jg3A7QW_BRNr8e8rolHHYzT_3a82-tdOGhW1bxUVRZ4vgiENDmdrMvG9zZ4n_1rlj-6ZCXP1It1TAw_Z0iTHvKfQN8bD2FOulJSMa5EBl8uoI0hpQjdn1Uo0ac0NdVrmpl9dnv3v-QaXwaKBfjlejjeraQ_fVkFXy38ycZNVv-dfid8CPGW-Nh2_DdhdcWB</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Richard, Samuel</creator><creator>Siewerdsen, Jeffrey H.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</title><author>Richard, Samuel ; Siewerdsen, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5751-6610ba44eff8e2a143d9014885c57f5cf2660357c9fb9ca208040b3e823702d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1/f noise</topic><topic>ALGORITHMS</topic><topic>AUTOMATION</topic><topic>BACKGROUND NOISE</topic><topic>biomedical measurement</topic><topic>bone</topic><topic>Bone and Bones - radiation effects</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer‐aided diagnosis</topic><topic>DETECTION</topic><topic>diagnostic radiography</topic><topic>FOURIER ANALYSIS</topic><topic>Humans</topic><topic>image denoising</topic><topic>Image sensors</topic><topic>image texture</topic><topic>medical diagnostic computing</topic><topic>Medical image noise</topic><topic>Medical image quality</topic><topic>Medical imaging</topic><topic>Models, Biological</topic><topic>Modulation transfer functions</topic><topic>Noise</topic><topic>Observation</topic><topic>orthopaedics</topic><topic>Quantum noise</topic><topic>Radiation Dosage</topic><topic>Radiation Imaging Physics</topic><topic>Radiography</topic><topic>Radiography - methods</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>sensitivity analysis</topic><topic>Spatial analysis</topic><topic>Spatial filtering</topic><topic>Systems analysis</topic><topic>X RADIATION</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, Samuel</creatorcontrib><creatorcontrib>Siewerdsen, Jeffrey H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, Samuel</au><au>Siewerdsen, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2008-11</date><risdate>2008</risdate><volume>35</volume><issue>11</issue><spage>5043</spage><epage>5053</epage><pages>5043-5053</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><eissn>0094-2405</eissn><coden>MPHYA6</coden><abstract>Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index
(
d
′
)
and area under the receiver operating characteristic
(
A
Z
)
. Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of
A
Z
as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>19070238</pmid><doi>10.1118/1.2988161</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2008-11, Vol.35 (11), p.5043-5053 |
issn | 0094-2405 2473-4209 0094-2405 |
language | eng |
recordid | cdi_pubmed_primary_19070238 |
source | Wiley-Blackwell Journals; MEDLINE; Alma/SFX Local Collection |
subjects | 1/f noise ALGORITHMS AUTOMATION BACKGROUND NOISE biomedical measurement bone Bone and Bones - radiation effects COMPARATIVE EVALUATIONS Computer‐aided diagnosis DETECTION diagnostic radiography FOURIER ANALYSIS Humans image denoising Image sensors image texture medical diagnostic computing Medical image noise Medical image quality Medical imaging Models, Biological Modulation transfer functions Noise Observation orthopaedics Quantum noise Radiation Dosage Radiation Imaging Physics Radiography Radiography - methods RADIOLOGY AND NUCLEAR MEDICINE sensitivity analysis Spatial analysis Spatial filtering Systems analysis X RADIATION X-Rays |
title | Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20model%20and%20human%20observer%20performance%20for%20detection%20and%20discrimination%20tasks%20using%20dual-energy%20x-ray%20images&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Richard,%20Samuel&rft.date=2008-11&rft.volume=35&rft.issue=11&rft.spage=5043&rft.epage=5053&rft.pages=5043-5053&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2988161&rft_dat=%3Cproquest_pubme%3E69892394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69892394&rft_id=info:pmid/19070238&rfr_iscdi=true |