Robust Regularized Kernel Regression

Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2008-12, Vol.38 (6), p.1639-1644
Hauptverfasser: Jianke Zhu, Hoi, S., Lyu, M.R.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1644
container_issue 6
container_start_page 1639
container_title IEEE transactions on cybernetics
container_volume 38
creator Jianke Zhu
Hoi, S.
Lyu, M.R.-T.
description Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber-epsiv insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising results show that the proposed method is effective and more efficient than traditional approaches.
doi_str_mv 10.1109/TSMCB.2008.927279
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_19022733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4669534</ieee_id><sourcerecordid>69813463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-cf0d6aea21d21bc42140aa0000b2fb5c5686037420bc0212163788beb68b87623</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMotlZ_gAgiIuJl60ySzeOoxRdWhFrPYbOblS3bbk26B_31pm5R8OBphplvZpiPkEOEISLoy-nL0-h6SAHUUFNJpd4ifdQcE-CabsccFEs4R90jeyHMAECDlrukhxoolYz1ydmksW1YnUzcW1tnvvp0xcmj8wtXr0vehVA1i32yU2Z1cAebOCCvtzfT0X0yfr57GF2Nk5xLWCV5CYXIXEaxoGhzTpFDlsWrYGlp0zwVSgCTnILNgSJFwaRS1lmhrJKCsgE57_YuffPeurAy8yrkrq6zhWvaYIRWyLhgEbz4F0QhkVGQQkf09A86a1q_iG8YFU-miFxGCDso900I3pVm6at55j8MglmrNt-qzVq16VTHmePN4tbOXfE7sXEbgaMOqJxzP20uhE4ZZ1-wo38W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862351147</pqid></control><display><type>article</type><title>Robust Regularized Kernel Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Jianke Zhu ; Hoi, S. ; Lyu, M.R.-T.</creator><creatorcontrib>Jianke Zhu ; Hoi, S. ; Lyu, M.R.-T.</creatorcontrib><description>Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber-epsiv insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising results show that the proposed method is effective and more efficient than traditional approaches.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2008.927279</identifier><identifier>PMID: 19022733</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Simulation ; Cybernetics ; Data Interpretation, Statistical ; Data mining ; Equivalence ; Formulations ; History ; Kernel ; Kernel regression ; Kernels ; Least squares approximation ; Least squares methods ; Mathematical models ; Mathematics ; Models, Statistical ; Noise robustness ; Optimization ; Pattern Recognition, Automated - methods ; Regression ; Regression Analysis ; regularized least squares (RLS) ; Resonance light scattering ; robust estimator ; Solvers ; Statistics ; Studies ; support vector machine (SVM) ; Support vector machines</subject><ispartof>IEEE transactions on cybernetics, 2008-12, Vol.38 (6), p.1639-1644</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-cf0d6aea21d21bc42140aa0000b2fb5c5686037420bc0212163788beb68b87623</citedby><cites>FETCH-LOGICAL-c470t-cf0d6aea21d21bc42140aa0000b2fb5c5686037420bc0212163788beb68b87623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4669534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4669534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19022733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Hoi, S.</creatorcontrib><creatorcontrib>Lyu, M.R.-T.</creatorcontrib><title>Robust Regularized Kernel Regression</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber-epsiv insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising results show that the proposed method is effective and more efficient than traditional approaches.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Cybernetics</subject><subject>Data Interpretation, Statistical</subject><subject>Data mining</subject><subject>Equivalence</subject><subject>Formulations</subject><subject>History</subject><subject>Kernel</subject><subject>Kernel regression</subject><subject>Kernels</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>Noise robustness</subject><subject>Optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Regression</subject><subject>Regression Analysis</subject><subject>regularized least squares (RLS)</subject><subject>Resonance light scattering</subject><subject>robust estimator</subject><subject>Solvers</subject><subject>Statistics</subject><subject>Studies</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEQgIMotlZ_gAgiIuJl60ySzeOoxRdWhFrPYbOblS3bbk26B_31pm5R8OBphplvZpiPkEOEISLoy-nL0-h6SAHUUFNJpd4ifdQcE-CabsccFEs4R90jeyHMAECDlrukhxoolYz1ydmksW1YnUzcW1tnvvp0xcmj8wtXr0vehVA1i32yU2Z1cAebOCCvtzfT0X0yfr57GF2Nk5xLWCV5CYXIXEaxoGhzTpFDlsWrYGlp0zwVSgCTnILNgSJFwaRS1lmhrJKCsgE57_YuffPeurAy8yrkrq6zhWvaYIRWyLhgEbz4F0QhkVGQQkf09A86a1q_iG8YFU-miFxGCDso900I3pVm6at55j8MglmrNt-qzVq16VTHmePN4tbOXfE7sXEbgaMOqJxzP20uhE4ZZ1-wo38W</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Jianke Zhu</creator><creator>Hoi, S.</creator><creator>Lyu, M.R.-T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>Robust Regularized Kernel Regression</title><author>Jianke Zhu ; Hoi, S. ; Lyu, M.R.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-cf0d6aea21d21bc42140aa0000b2fb5c5686037420bc0212163788beb68b87623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Cybernetics</topic><topic>Data Interpretation, Statistical</topic><topic>Data mining</topic><topic>Equivalence</topic><topic>Formulations</topic><topic>History</topic><topic>Kernel</topic><topic>Kernel regression</topic><topic>Kernels</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>Noise robustness</topic><topic>Optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Regression</topic><topic>Regression Analysis</topic><topic>regularized least squares (RLS)</topic><topic>Resonance light scattering</topic><topic>robust estimator</topic><topic>Solvers</topic><topic>Statistics</topic><topic>Studies</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianke Zhu</creatorcontrib><creatorcontrib>Hoi, S.</creatorcontrib><creatorcontrib>Lyu, M.R.-T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianke Zhu</au><au>Hoi, S.</au><au>Lyu, M.R.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Regularized Kernel Regression</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>38</volume><issue>6</issue><spage>1639</spage><epage>1644</epage><pages>1639-1644</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Robust regression techniques are critical to fitting data with noise in real-world applications. Most previous work of robust kernel regression is usually formulated into a dual form, which is then solved by some quadratic program solver consequently. In this correspondence, we propose a new formulation for robust regularized kernel regression under the theoretical framework of regularization networks and then tackle the optimization problem directly in the primal. We show that the primal and dual approaches are equivalent to achieving similar regression performance, but the primal formulation is more efficient and easier to be implemented than the dual one. Different from previous work, our approach also optimizes the bias term. In addition, we show that the proposed solution can be easily extended to other noise-reliable loss function, including the Huber-epsiv insensitive loss function. Finally, we conduct a set of experiments on both artificial and real data sets, in which promising results show that the proposed method is effective and more efficient than traditional approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19022733</pmid><doi>10.1109/TSMCB.2008.927279</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2008-12, Vol.38 (6), p.1639-1644
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_pubmed_primary_19022733
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Computer Simulation
Cybernetics
Data Interpretation, Statistical
Data mining
Equivalence
Formulations
History
Kernel
Kernel regression
Kernels
Least squares approximation
Least squares methods
Mathematical models
Mathematics
Models, Statistical
Noise robustness
Optimization
Pattern Recognition, Automated - methods
Regression
Regression Analysis
regularized least squares (RLS)
Resonance light scattering
robust estimator
Solvers
Statistics
Studies
support vector machine (SVM)
Support vector machines
title Robust Regularized Kernel Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Regularized%20Kernel%20Regression&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Jianke%20Zhu&rft.date=2008-12-01&rft.volume=38&rft.issue=6&rft.spage=1639&rft.epage=1644&rft.pages=1639-1644&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2008.927279&rft_dat=%3Cproquest_RIE%3E69813463%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862351147&rft_id=info:pmid/19022733&rft_ieee_id=4669534&rfr_iscdi=true