ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors

Voltage-gated sodium (NaV1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to NaV1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding NaV1.7, cause channelopathy-associated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2008-11, Vol.74 (5), p.1476-1484
Hauptverfasser: Schmalhofer, William A., Calhoun, Jeffrey, Burrows, Rachel, Bailey, Timothy, Kohler, Martin G., Weinglass, Adam B., Kaczorowski, Gregory J., Garcia, Maria L., Koltzenburg, Martin, Priest, Birgit T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1484
container_issue 5
container_start_page 1476
container_title Molecular pharmacology
container_volume 74
creator Schmalhofer, William A.
Calhoun, Jeffrey
Burrows, Rachel
Bailey, Timothy
Kohler, Martin G.
Weinglass, Adam B.
Kaczorowski, Gregory J.
Garcia, Maria L.
Koltzenburg, Martin
Priest, Birgit T.
description Voltage-gated sodium (NaV1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to NaV1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding NaV1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make NaV1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires NaV1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with NaV1.7 channels, inhibiting NaV1.7 with an IC50 value of 0.3 nM, compared with IC50 values of 30 to 150 nM for other heterologously expressed NaV1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Aβ-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II (125I-ProTx-II) binds with high affinity (Kd = 0.3 nM) to recombinant hNaV1.7 channels. Binding of 125I-ProTx-II is insensitive to the presence of other well characterized NaV1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the 125I-ProTx-II binding assay, described here, offers a new tool in the search for novel NaV1.7-selective blockers.
doi_str_mv 10.1124/mol.108.047670
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_18728100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24146135</els_id><sourcerecordid>18728100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-96cbb20d55683567eea4338048c049c61a32371a125586584ce502be263383eb3</originalsourceid><addsrcrecordid>eNp1kEFP3DAQRq2qFWwp1x4rn3oi6YwTJ94jrGhZCVEkaNWb5TizG5ckjuwA5d_XEKSeeprR6H2fRo-xjwg5oii_DL7PEVQOZV3V8IatUArMABHfshWAqDK1lr8O2fsYfwNgKRUcsENUtVAIsGLDdfC3f7Lt9oQbfkM92dk9EN-OnWvc7AP3O35lfmJe8xvfuvuBbzozjtTHE37We3sX-WmK-JFf-5nG2Zmep8rJ7M3L1Y38yltnaUpl8QN7tzN9pOPXecR-fD2_3Vxkl9-_bTenl5ktYD1n68o2jYBWykoVsqqJTFkUCkploVzbCk0hihoNCilVJVVpSYJoSFSJKqgpjli-9NrgYwy001NwgwlPGkE_e9PJW9qVXrylwKclMN03A7X_8FdRCfi8AJ3bd48ukJ46EwZjfe_3T7outdSYuhKoFjApogdHQUfraLTUppCddevd_574C-CLh6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><creator>Schmalhofer, William A. ; Calhoun, Jeffrey ; Burrows, Rachel ; Bailey, Timothy ; Kohler, Martin G. ; Weinglass, Adam B. ; Kaczorowski, Gregory J. ; Garcia, Maria L. ; Koltzenburg, Martin ; Priest, Birgit T.</creator><creatorcontrib>Schmalhofer, William A. ; Calhoun, Jeffrey ; Burrows, Rachel ; Bailey, Timothy ; Kohler, Martin G. ; Weinglass, Adam B. ; Kaczorowski, Gregory J. ; Garcia, Maria L. ; Koltzenburg, Martin ; Priest, Birgit T.</creatorcontrib><description>Voltage-gated sodium (NaV1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to NaV1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding NaV1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make NaV1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires NaV1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with NaV1.7 channels, inhibiting NaV1.7 with an IC50 value of 0.3 nM, compared with IC50 values of 30 to 150 nM for other heterologously expressed NaV1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Aβ-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II (125I-ProTx-II) binds with high affinity (Kd = 0.3 nM) to recombinant hNaV1.7 channels. Binding of 125I-ProTx-II is insensitive to the presence of other well characterized NaV1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the 125I-ProTx-II binding assay, described here, offers a new tool in the search for novel NaV1.7-selective blockers.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.108.047670</identifier><identifier>PMID: 18728100</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA Primers ; Humans ; Ion Channel Gating ; Male ; Models, Animal ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Nociceptors - drug effects ; Radioligand Assay ; Rats ; Rats, Sprague-Dawley ; Sequence Homology, Amino Acid ; Sodium Channel Blockers - pharmacology ; Sodium Channels - chemistry ; Sodium Channels - drug effects ; Sodium Channels - genetics ; Sodium Channels - physiology ; Spider Venoms - pharmacology</subject><ispartof>Molecular pharmacology, 2008-11, Vol.74 (5), p.1476-1484</ispartof><rights>2006 American Society for Pharmacology and Experimental Therapeutics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-96cbb20d55683567eea4338048c049c61a32371a125586584ce502be263383eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18728100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmalhofer, William A.</creatorcontrib><creatorcontrib>Calhoun, Jeffrey</creatorcontrib><creatorcontrib>Burrows, Rachel</creatorcontrib><creatorcontrib>Bailey, Timothy</creatorcontrib><creatorcontrib>Kohler, Martin G.</creatorcontrib><creatorcontrib>Weinglass, Adam B.</creatorcontrib><creatorcontrib>Kaczorowski, Gregory J.</creatorcontrib><creatorcontrib>Garcia, Maria L.</creatorcontrib><creatorcontrib>Koltzenburg, Martin</creatorcontrib><creatorcontrib>Priest, Birgit T.</creatorcontrib><title>ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>Voltage-gated sodium (NaV1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to NaV1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding NaV1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make NaV1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires NaV1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with NaV1.7 channels, inhibiting NaV1.7 with an IC50 value of 0.3 nM, compared with IC50 values of 30 to 150 nM for other heterologously expressed NaV1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Aβ-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II (125I-ProTx-II) binds with high affinity (Kd = 0.3 nM) to recombinant hNaV1.7 channels. Binding of 125I-ProTx-II is insensitive to the presence of other well characterized NaV1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the 125I-ProTx-II binding assay, described here, offers a new tool in the search for novel NaV1.7-selective blockers.</description><subject>Action Potentials - drug effects</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Line</subject><subject>DNA Primers</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Male</subject><subject>Models, Animal</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nociceptors - drug effects</subject><subject>Radioligand Assay</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - drug effects</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - physiology</subject><subject>Spider Venoms - pharmacology</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP3DAQRq2qFWwp1x4rn3oi6YwTJ94jrGhZCVEkaNWb5TizG5ckjuwA5d_XEKSeeprR6H2fRo-xjwg5oii_DL7PEVQOZV3V8IatUArMABHfshWAqDK1lr8O2fsYfwNgKRUcsENUtVAIsGLDdfC3f7Lt9oQbfkM92dk9EN-OnWvc7AP3O35lfmJe8xvfuvuBbzozjtTHE37We3sX-WmK-JFf-5nG2Zmep8rJ7M3L1Y38yltnaUpl8QN7tzN9pOPXecR-fD2_3Vxkl9-_bTenl5ktYD1n68o2jYBWykoVsqqJTFkUCkploVzbCk0hihoNCilVJVVpSYJoSFSJKqgpjli-9NrgYwy001NwgwlPGkE_e9PJW9qVXrylwKclMN03A7X_8FdRCfi8AJ3bd48ukJ46EwZjfe_3T7outdSYuhKoFjApogdHQUfraLTUppCddevd_574C-CLh6g</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Schmalhofer, William A.</creator><creator>Calhoun, Jeffrey</creator><creator>Burrows, Rachel</creator><creator>Bailey, Timothy</creator><creator>Kohler, Martin G.</creator><creator>Weinglass, Adam B.</creator><creator>Kaczorowski, Gregory J.</creator><creator>Garcia, Maria L.</creator><creator>Koltzenburg, Martin</creator><creator>Priest, Birgit T.</creator><general>Elsevier Inc</general><general>American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200811</creationdate><title>ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors</title><author>Schmalhofer, William A. ; Calhoun, Jeffrey ; Burrows, Rachel ; Bailey, Timothy ; Kohler, Martin G. ; Weinglass, Adam B. ; Kaczorowski, Gregory J. ; Garcia, Maria L. ; Koltzenburg, Martin ; Priest, Birgit T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-96cbb20d55683567eea4338048c049c61a32371a125586584ce502be263383eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - drug effects</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Line</topic><topic>DNA Primers</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Male</topic><topic>Models, Animal</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nociceptors - drug effects</topic><topic>Radioligand Assay</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - drug effects</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - physiology</topic><topic>Spider Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmalhofer, William A.</creatorcontrib><creatorcontrib>Calhoun, Jeffrey</creatorcontrib><creatorcontrib>Burrows, Rachel</creatorcontrib><creatorcontrib>Bailey, Timothy</creatorcontrib><creatorcontrib>Kohler, Martin G.</creatorcontrib><creatorcontrib>Weinglass, Adam B.</creatorcontrib><creatorcontrib>Kaczorowski, Gregory J.</creatorcontrib><creatorcontrib>Garcia, Maria L.</creatorcontrib><creatorcontrib>Koltzenburg, Martin</creatorcontrib><creatorcontrib>Priest, Birgit T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmalhofer, William A.</au><au>Calhoun, Jeffrey</au><au>Burrows, Rachel</au><au>Bailey, Timothy</au><au>Kohler, Martin G.</au><au>Weinglass, Adam B.</au><au>Kaczorowski, Gregory J.</au><au>Garcia, Maria L.</au><au>Koltzenburg, Martin</au><au>Priest, Birgit T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2008-11</date><risdate>2008</risdate><volume>74</volume><issue>5</issue><spage>1476</spage><epage>1484</epage><pages>1476-1484</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>Voltage-gated sodium (NaV1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to NaV1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding NaV1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make NaV1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires NaV1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with NaV1.7 channels, inhibiting NaV1.7 with an IC50 value of 0.3 nM, compared with IC50 values of 30 to 150 nM for other heterologously expressed NaV1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Aβ-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II (125I-ProTx-II) binds with high affinity (Kd = 0.3 nM) to recombinant hNaV1.7 channels. Binding of 125I-ProTx-II is insensitive to the presence of other well characterized NaV1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the 125I-ProTx-II binding assay, described here, offers a new tool in the search for novel NaV1.7-selective blockers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18728100</pmid><doi>10.1124/mol.108.047670</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 2008-11, Vol.74 (5), p.1476-1484
issn 0026-895X
1521-0111
language eng
recordid cdi_pubmed_primary_18728100
source MEDLINE; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry
subjects Action Potentials - drug effects
Amino Acid Sequence
Animals
Base Sequence
Cell Line
DNA Primers
Humans
Ion Channel Gating
Male
Models, Animal
Molecular Sequence Data
Mutagenesis, Site-Directed
Nociceptors - drug effects
Radioligand Assay
Rats
Rats, Sprague-Dawley
Sequence Homology, Amino Acid
Sodium Channel Blockers - pharmacology
Sodium Channels - chemistry
Sodium Channels - drug effects
Sodium Channels - genetics
Sodium Channels - physiology
Spider Venoms - pharmacology
title ProTx-II, a Selective Inhibitor of NaV1.7 Sodium Channels, Blocks Action Potential Propagation in Nociceptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProTx-II,%20a%20Selective%20Inhibitor%20of%20NaV1.7%20Sodium%20Channels,%20Blocks%20Action%20Potential%20Propagation%20in%20Nociceptors&rft.jtitle=Molecular%20pharmacology&rft.au=Schmalhofer,%20William%20A.&rft.date=2008-11&rft.volume=74&rft.issue=5&rft.spage=1476&rft.epage=1484&rft.pages=1476-1484&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.108.047670&rft_dat=%3Cpubmed_cross%3E18728100%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18728100&rft_els_id=S0026895X24146135&rfr_iscdi=true