System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT
For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2008-07, Vol.27 (7), p.960-971 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 7 |
container_start_page | 960 |
container_title | IEEE transactions on medical imaging |
container_volume | 27 |
creator | van der Have, F. Vastenhouw, B. Rentmeester, M. Beekman, F.J. |
description | For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity and resolution. Ideally, such compensation methods are based on accurate knowledge of the position-dependent point spread functions (PSFs) specifying the response of the detectors to a point source at every position in the instrument. This paper describes a method for model-based generation of complete PSF lookup tables from a limited number of point-source measurements for stationary SPECT systems and its application to a submillimeter resolution stationary small-animal SPECT system containing 75 pinholes (U-SPECT-I). The method is based on the generalization over the entire object to be reconstructed, of a small number of properties of point-source responses which are obtained at a limited number of measurement positions. The full shape of measured point-source responses can almost be preserved in newly created PSF tables. We show that these PSFs can be used to obtain high-resolution SPECT reconstructions: the reconstructed resolutions judged by rod visibility in a micro-Derenzo phantom are 0.45 mm with 0.6-mm pinholes and below 0.35 mm with 0.3-mm pinholes. In addition, we show that different approximations, such as truncating the PSF kernel, with significant reduction of reconstruction time, can still lead to acceptable reconstructions. |
doi_str_mv | 10.1109/TMI.2008.924644 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18599401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4505843</ieee_id><sourcerecordid>19419419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-81f06ab02400ad5755f6f0030237ac3c5e4655adc35429277c371e57d991e3f13</originalsourceid><addsrcrecordid>eNqFkU1LJDEQhoO46Phx9iBIswf31GPlo5LOcRncdUBRnBH21mTSae2hu6NJ98F_v3Fm2IU9rBCowPtUhdRDyBmFKaWgr5Z38ykDKKaaCSnEHplQxCJnKH7tkwkwVeQAkh2SoxjXAFQg6ANySAvUWgCdkPXiPQ6uy2ambVbBDI3vM9NX2WJI9zg01rTZvDPPLnt01vdxCKPdQLUP2VM7BJPfNM8vKY2-HTfJptX3JrxnD03_4luXLR6uZ8sT8qU2bXSnu3pMnn5cL2c3-e39z_ns-21ukbIhL2gN0qyACQBToUKsZQ3AgXFlLLfohEQ0leUomGZKWa6oQ1VpTR2vKT8m37ZzX4N_G10cyq6J1rWt6Z0fY1lIjUpLiom8_C8pNdNKa_4pSLXYnAR-_Qdc-zH06bvpWaZQA5MJutpCNvgYg6vL19B0aV8lhfJDa5m0lh9ay63W1HGxGzuuOlf95XceE3C-BRrn3J842cZCcP4bZRGk-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862759026</pqid></control><display><type>article</type><title>System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT</title><source>IEEE Electronic Library (IEL)</source><creator>van der Have, F. ; Vastenhouw, B. ; Rentmeester, M. ; Beekman, F.J.</creator><creatorcontrib>van der Have, F. ; Vastenhouw, B. ; Rentmeester, M. ; Beekman, F.J.</creatorcontrib><description>For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity and resolution. Ideally, such compensation methods are based on accurate knowledge of the position-dependent point spread functions (PSFs) specifying the response of the detectors to a point source at every position in the instrument. This paper describes a method for model-based generation of complete PSF lookup tables from a limited number of point-source measurements for stationary SPECT systems and its application to a submillimeter resolution stationary small-animal SPECT system containing 75 pinholes (U-SPECT-I). The method is based on the generalization over the entire object to be reconstructed, of a small number of properties of point-source responses which are obtained at a limited number of measurement positions. The full shape of measured point-source responses can almost be preserved in newly created PSF tables. We show that these PSFs can be used to obtain high-resolution SPECT reconstructions: the reconstructed resolutions judged by rod visibility in a micro-Derenzo phantom are 0.45 mm with 0.6-mm pinholes and below 0.35 mm with 0.3-mm pinholes. In addition, we show that different approximations, such as truncating the PSF kernel, with significant reduction of reconstruction time, can still lead to acceptable reconstructions.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2008.924644</identifier><identifier>PMID: 18599401</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Biometry - methods ; Calibration ; Computational geometry ; Computed tomography ; Equipment Failure Analysis ; Feedback ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image resolution ; Iterative methods ; Models, Theoretical ; Phantoms, Imaging ; pinhole ; reconstruction ; Reconstruction algorithms ; Sensitivity and Specificity ; Shape measurement ; single-photon emission computed tomography (SPECT) ; Spatial resolution ; Studies ; Tomography, Emission-Computed, Single-Photon - instrumentation ; Tomography, Emission-Computed, Single-Photon - methods</subject><ispartof>IEEE transactions on medical imaging, 2008-07, Vol.27 (7), p.960-971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-81f06ab02400ad5755f6f0030237ac3c5e4655adc35429277c371e57d991e3f13</citedby><cites>FETCH-LOGICAL-c512t-81f06ab02400ad5755f6f0030237ac3c5e4655adc35429277c371e57d991e3f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4505843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4505843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18599401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Have, F.</creatorcontrib><creatorcontrib>Vastenhouw, B.</creatorcontrib><creatorcontrib>Rentmeester, M.</creatorcontrib><creatorcontrib>Beekman, F.J.</creatorcontrib><title>System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity and resolution. Ideally, such compensation methods are based on accurate knowledge of the position-dependent point spread functions (PSFs) specifying the response of the detectors to a point source at every position in the instrument. This paper describes a method for model-based generation of complete PSF lookup tables from a limited number of point-source measurements for stationary SPECT systems and its application to a submillimeter resolution stationary small-animal SPECT system containing 75 pinholes (U-SPECT-I). The method is based on the generalization over the entire object to be reconstructed, of a small number of properties of point-source responses which are obtained at a limited number of measurement positions. The full shape of measured point-source responses can almost be preserved in newly created PSF tables. We show that these PSFs can be used to obtain high-resolution SPECT reconstructions: the reconstructed resolutions judged by rod visibility in a micro-Derenzo phantom are 0.45 mm with 0.6-mm pinholes and below 0.35 mm with 0.3-mm pinholes. In addition, we show that different approximations, such as truncating the PSF kernel, with significant reduction of reconstruction time, can still lead to acceptable reconstructions.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Biometry - methods</subject><subject>Calibration</subject><subject>Computational geometry</subject><subject>Computed tomography</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Iterative methods</subject><subject>Models, Theoretical</subject><subject>Phantoms, Imaging</subject><subject>pinhole</subject><subject>reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Sensitivity and Specificity</subject><subject>Shape measurement</subject><subject>single-photon emission computed tomography (SPECT)</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>Tomography, Emission-Computed, Single-Photon - instrumentation</subject><subject>Tomography, Emission-Computed, Single-Photon - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1LJDEQhoO46Phx9iBIswf31GPlo5LOcRncdUBRnBH21mTSae2hu6NJ98F_v3Fm2IU9rBCowPtUhdRDyBmFKaWgr5Z38ykDKKaaCSnEHplQxCJnKH7tkwkwVeQAkh2SoxjXAFQg6ANySAvUWgCdkPXiPQ6uy2ambVbBDI3vM9NX2WJI9zg01rTZvDPPLnt01vdxCKPdQLUP2VM7BJPfNM8vKY2-HTfJptX3JrxnD03_4luXLR6uZ8sT8qU2bXSnu3pMnn5cL2c3-e39z_ns-21ukbIhL2gN0qyACQBToUKsZQ3AgXFlLLfohEQ0leUomGZKWa6oQ1VpTR2vKT8m37ZzX4N_G10cyq6J1rWt6Z0fY1lIjUpLiom8_C8pNdNKa_4pSLXYnAR-_Qdc-zH06bvpWaZQA5MJutpCNvgYg6vL19B0aV8lhfJDa5m0lh9ay63W1HGxGzuuOlf95XceE3C-BRrn3J842cZCcP4bZRGk-g</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>van der Have, F.</creator><creator>Vastenhouw, B.</creator><creator>Rentmeester, M.</creator><creator>Beekman, F.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT</title><author>van der Have, F. ; Vastenhouw, B. ; Rentmeester, M. ; Beekman, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-81f06ab02400ad5755f6f0030237ac3c5e4655adc35429277c371e57d991e3f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Biometry - methods</topic><topic>Calibration</topic><topic>Computational geometry</topic><topic>Computed tomography</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Iterative methods</topic><topic>Models, Theoretical</topic><topic>Phantoms, Imaging</topic><topic>pinhole</topic><topic>reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Sensitivity and Specificity</topic><topic>Shape measurement</topic><topic>single-photon emission computed tomography (SPECT)</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>Tomography, Emission-Computed, Single-Photon - instrumentation</topic><topic>Tomography, Emission-Computed, Single-Photon - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>van der Have, F.</creatorcontrib><creatorcontrib>Vastenhouw, B.</creatorcontrib><creatorcontrib>Rentmeester, M.</creatorcontrib><creatorcontrib>Beekman, F.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van der Have, F.</au><au>Vastenhouw, B.</au><au>Rentmeester, M.</au><au>Beekman, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>27</volume><issue>7</issue><spage>960</spage><epage>971</epage><pages>960-971</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity and resolution. Ideally, such compensation methods are based on accurate knowledge of the position-dependent point spread functions (PSFs) specifying the response of the detectors to a point source at every position in the instrument. This paper describes a method for model-based generation of complete PSF lookup tables from a limited number of point-source measurements for stationary SPECT systems and its application to a submillimeter resolution stationary small-animal SPECT system containing 75 pinholes (U-SPECT-I). The method is based on the generalization over the entire object to be reconstructed, of a small number of properties of point-source responses which are obtained at a limited number of measurement positions. The full shape of measured point-source responses can almost be preserved in newly created PSF tables. We show that these PSFs can be used to obtain high-resolution SPECT reconstructions: the reconstructed resolutions judged by rod visibility in a micro-Derenzo phantom are 0.45 mm with 0.6-mm pinholes and below 0.35 mm with 0.3-mm pinholes. In addition, we show that different approximations, such as truncating the PSF kernel, with significant reduction of reconstruction time, can still lead to acceptable reconstructions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18599401</pmid><doi>10.1109/TMI.2008.924644</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2008-07, Vol.27 (7), p.960-971 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_18599401 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Biometry - methods Calibration Computational geometry Computed tomography Equipment Failure Analysis Feedback Image Processing, Computer-Assisted - methods Image reconstruction Image resolution Iterative methods Models, Theoretical Phantoms, Imaging pinhole reconstruction Reconstruction algorithms Sensitivity and Specificity Shape measurement single-photon emission computed tomography (SPECT) Spatial resolution Studies Tomography, Emission-Computed, Single-Photon - instrumentation Tomography, Emission-Computed, Single-Photon - methods |
title | System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20Calibration%20and%20Statistical%20Image%20Reconstruction%20for%20Ultra-High%20Resolution%20Stationary%20Pinhole%20SPECT&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=van%20der%20Have,%20F.&rft.date=2008-07-01&rft.volume=27&rft.issue=7&rft.spage=960&rft.epage=971&rft.pages=960-971&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2008.924644&rft_dat=%3Cproquest_RIE%3E19419419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862759026&rft_id=info:pmid/18599401&rft_ieee_id=4505843&rfr_iscdi=true |