Application of immobilized nanotubular TiO(2) electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water

In this study, immobilized TiO(2) electrode is applied to reduce toxic Cr(VI) to non-toxic Cr(III) in aqueous solution under UV irradiation. To overcome the limitation of powder TiO(2), a novel technique of immobilization based on anodization was applied and investigated under various experimental c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-01, Vol.161 (2-3), p.1069
Hauptverfasser: Yoon, Jaekyung, Shim, Eunjung, Bae, Sanghyun, Joo, Hyunku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, immobilized TiO(2) electrode is applied to reduce toxic Cr(VI) to non-toxic Cr(III) in aqueous solution under UV irradiation. To overcome the limitation of powder TiO(2), a novel technique of immobilization based on anodization was applied and investigated under various experimental conditions. The anodization was performed at 20V-5 degrees C for 45min with 0.5% hydrofluoric acid, and then the anodized samples were annealed under oxygen stream in the range 450-850 degrees C. Based on the results of the experiments, the photocatalytic Cr(VI) reduction was favorable in acidic conditions, with approximately 98% of the Cr(VI) being reduced within 2h at pH 3. Among the samples tested under same anodizing condition, the nanotubular TiO(2) annealed at 450 and 550 degrees C showed highest reduction efficiencies of Cr(VI). In addition, the surface characterizations (zeta potential, XRD, and SEM) of these samples proved that the Cr(VI) reduction efficiency was higher under acidic conditions and at a lower annealing temperature. From this research, it was concluded that the anodized TiO(2) has the potential to be a useful technology for environmental remediation as well as photocatalytic hydrogen production from water.
ISSN:0304-3894
DOI:10.1016/j.jhazmat.2008.04.057