Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR

Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-03, Vol.105 (12), p.4621-4626
Hauptverfasser: Franks, W. Trent, Wylie, Benjamin J, Schmidt, Heather L. Frericks, Nieuwkoop, Andrew J, Mayrhofer, Rebecca-Maria, Shah, Gautam J, Graesser, Daniel T, Rienstra, Chad M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4626
container_issue 12
container_start_page 4621
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Franks, W. Trent
Wylie, Benjamin J
Schmidt, Heather L. Frericks
Nieuwkoop, Andrew J
Mayrhofer, Rebecca-Maria
Shah, Gautam J
Graesser, Daniel T
Rienstra, Chad M
description Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of [almost equal to]1 Å, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 Å (1.52 ± 0.12 Å for all heavy atoms), which improved to 0.49 ± 0.05 Å (1.19 ± 0.07 Å) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 Å bbRMSD (1.06 ± 0.07 Å); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 Å; 1.29 ± 0.07 Å) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography.
doi_str_mv 10.1073/pnas.0712393105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_18344321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25461472</jstor_id><sourcerecordid>25461472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-ac0725d9a1afb4556678101fd297debb7628f48a7813f841864f01f998054d203</originalsourceid><addsrcrecordid>eNp9kc2PFCEUxInRuOPq2ZNKPBgvvfug6QYuJmb9TFZN1D0TuhtWJjSMQBvnv5dxJjvqwRPJq98rKAqhhwTOCPD2fBN0PgNOaCtbAt0ttCIgSdMzCbfRCoDyRjDKTtC9nNcAIDsBd9EJES1jLSUrNL9ym-gNLibkmJpBZzNhXeLsxiaZHP1SXAw4l7SMZUkGT6aYNLugf8-jxRoHHeKYtrlo710weJNiMS7gYYurgZuaqhSDP374fB_dsdpn8-BwnqKrN6-_XrxrLj-9fX_x8rIZeyJKo0fgtJukJtoOrOv6ngsCxE5U8skMA--psEzoOm2tYET0zFZZSgEdmyi0p-jF3nezDLOZRhNK0l5tkpt12qqonfpbCe6buo4_FKUSOCfV4NnBIMXvi8lFzS6PxnsdTFyyovWi-t-8gk__AddxSaGGqwxppWAdrdD5HhpTzDkZe_MSAmrXo9r1qI491o3HfwY48ofiKvD8AOw2j3adIlSxnhJlF--L-Vkq-uT_aCUe7Yl1LjHdILRjPWGcHh2sjkpfJ5fV1ZddPADBBUjR_gIas8Xb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201398452</pqid></control><display><type>article</type><title>Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Franks, W. Trent ; Wylie, Benjamin J ; Schmidt, Heather L. Frericks ; Nieuwkoop, Andrew J ; Mayrhofer, Rebecca-Maria ; Shah, Gautam J ; Graesser, Daniel T ; Rienstra, Chad M</creator><creatorcontrib>Franks, W. Trent ; Wylie, Benjamin J ; Schmidt, Heather L. Frericks ; Nieuwkoop, Andrew J ; Mayrhofer, Rebecca-Maria ; Shah, Gautam J ; Graesser, Daniel T ; Rienstra, Chad M</creatorcontrib><description>Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of [almost equal to]1 Å, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 Å (1.52 ± 0.12 Å for all heavy atoms), which improved to 0.49 ± 0.05 Å (1.19 ± 0.07 Å) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 Å bbRMSD (1.06 ± 0.07 Å); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 Å; 1.29 ± 0.07 Å) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712393105</identifier><identifier>PMID: 18344321</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atoms ; Atoms &amp; subatomic particles ; Biological Sciences ; Chemical equilibrium ; Correlations ; Crystal structure ; Crystallography ; Databases, Protein ; Immunoglobulins ; Isotope Labeling ; Molecular structure ; Nanocrystals ; Nanoparticles - chemistry ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - metabolism ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Physical Sciences ; Protein Folding ; Protein Structure, Tertiary ; Proteins ; Reproducibility of Results ; Rotating bodies ; Simulated annealing ; Spectral correlation ; Spectroscopy ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (12), p.4621-4626</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 25, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-ac0725d9a1afb4556678101fd297debb7628f48a7813f841864f01f998054d203</citedby><cites>FETCH-LOGICAL-c618t-ac0725d9a1afb4556678101fd297debb7628f48a7813f841864f01f998054d203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25461472$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25461472$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18344321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franks, W. Trent</creatorcontrib><creatorcontrib>Wylie, Benjamin J</creatorcontrib><creatorcontrib>Schmidt, Heather L. Frericks</creatorcontrib><creatorcontrib>Nieuwkoop, Andrew J</creatorcontrib><creatorcontrib>Mayrhofer, Rebecca-Maria</creatorcontrib><creatorcontrib>Shah, Gautam J</creatorcontrib><creatorcontrib>Graesser, Daniel T</creatorcontrib><creatorcontrib>Rienstra, Chad M</creatorcontrib><title>Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of [almost equal to]1 Å, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 Å (1.52 ± 0.12 Å for all heavy atoms), which improved to 0.49 ± 0.05 Å (1.19 ± 0.07 Å) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 Å bbRMSD (1.06 ± 0.07 Å); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 Å; 1.29 ± 0.07 Å) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography.</description><subject>Atoms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Biological Sciences</subject><subject>Chemical equilibrium</subject><subject>Correlations</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Databases, Protein</subject><subject>Immunoglobulins</subject><subject>Isotope Labeling</subject><subject>Molecular structure</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Physical Sciences</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Rotating bodies</subject><subject>Simulated annealing</subject><subject>Spectral correlation</subject><subject>Spectroscopy</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2PFCEUxInRuOPq2ZNKPBgvvfug6QYuJmb9TFZN1D0TuhtWJjSMQBvnv5dxJjvqwRPJq98rKAqhhwTOCPD2fBN0PgNOaCtbAt0ttCIgSdMzCbfRCoDyRjDKTtC9nNcAIDsBd9EJES1jLSUrNL9ym-gNLibkmJpBZzNhXeLsxiaZHP1SXAw4l7SMZUkGT6aYNLugf8-jxRoHHeKYtrlo710weJNiMS7gYYurgZuaqhSDP374fB_dsdpn8-BwnqKrN6-_XrxrLj-9fX_x8rIZeyJKo0fgtJukJtoOrOv6ngsCxE5U8skMA--psEzoOm2tYET0zFZZSgEdmyi0p-jF3nezDLOZRhNK0l5tkpt12qqonfpbCe6buo4_FKUSOCfV4NnBIMXvi8lFzS6PxnsdTFyyovWi-t-8gk__AddxSaGGqwxppWAdrdD5HhpTzDkZe_MSAmrXo9r1qI491o3HfwY48ofiKvD8AOw2j3adIlSxnhJlF--L-Vkq-uT_aCUe7Yl1LjHdILRjPWGcHh2sjkpfJ5fV1ZddPADBBUjR_gIas8Xb</recordid><startdate>20080325</startdate><enddate>20080325</enddate><creator>Franks, W. Trent</creator><creator>Wylie, Benjamin J</creator><creator>Schmidt, Heather L. Frericks</creator><creator>Nieuwkoop, Andrew J</creator><creator>Mayrhofer, Rebecca-Maria</creator><creator>Shah, Gautam J</creator><creator>Graesser, Daniel T</creator><creator>Rienstra, Chad M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>5PM</scope></search><sort><creationdate>20080325</creationdate><title>Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR</title><author>Franks, W. Trent ; Wylie, Benjamin J ; Schmidt, Heather L. Frericks ; Nieuwkoop, Andrew J ; Mayrhofer, Rebecca-Maria ; Shah, Gautam J ; Graesser, Daniel T ; Rienstra, Chad M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-ac0725d9a1afb4556678101fd297debb7628f48a7813f841864f01f998054d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atoms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Biological Sciences</topic><topic>Chemical equilibrium</topic><topic>Correlations</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Databases, Protein</topic><topic>Immunoglobulins</topic><topic>Isotope Labeling</topic><topic>Molecular structure</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Physical Sciences</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Rotating bodies</topic><topic>Simulated annealing</topic><topic>Spectral correlation</topic><topic>Spectroscopy</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franks, W. Trent</creatorcontrib><creatorcontrib>Wylie, Benjamin J</creatorcontrib><creatorcontrib>Schmidt, Heather L. Frericks</creatorcontrib><creatorcontrib>Nieuwkoop, Andrew J</creatorcontrib><creatorcontrib>Mayrhofer, Rebecca-Maria</creatorcontrib><creatorcontrib>Shah, Gautam J</creatorcontrib><creatorcontrib>Graesser, Daniel T</creatorcontrib><creatorcontrib>Rienstra, Chad M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franks, W. Trent</au><au>Wylie, Benjamin J</au><au>Schmidt, Heather L. Frericks</au><au>Nieuwkoop, Andrew J</au><au>Mayrhofer, Rebecca-Maria</au><au>Shah, Gautam J</au><au>Graesser, Daniel T</au><au>Rienstra, Chad M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-03-25</date><risdate>2008</risdate><volume>105</volume><issue>12</issue><spage>4621</spage><epage>4626</epage><pages>4621-4626</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of [almost equal to]1 Å, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 ± 0.13 Å (1.52 ± 0.12 Å for all heavy atoms), which improved to 0.49 ± 0.05 Å (1.19 ± 0.07 Å) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 ± 0.06 Å bbRMSD (1.06 ± 0.07 Å); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 ± 0.09 Å; 1.29 ± 0.07 Å) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18344321</pmid><doi>10.1073/pnas.0712393105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (12), p.4621-4626
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_18344321
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atoms
Atoms & subatomic particles
Biological Sciences
Chemical equilibrium
Correlations
Crystal structure
Crystallography
Databases, Protein
Immunoglobulins
Isotope Labeling
Molecular structure
Nanocrystals
Nanoparticles - chemistry
Nerve Tissue Proteins - chemistry
Nerve Tissue Proteins - metabolism
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Physical Sciences
Protein Folding
Protein Structure, Tertiary
Proteins
Reproducibility of Results
Rotating bodies
Simulated annealing
Spectral correlation
Spectroscopy
Thermodynamics
title Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipole%20tensor-based%20atomic-resolution%20structure%20determination%20of%20a%20nanocrystalline%20protein%20by%20solid-state%20NMR&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Franks,%20W.%20Trent&rft.date=2008-03-25&rft.volume=105&rft.issue=12&rft.spage=4621&rft.epage=4626&rft.pages=4621-4626&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712393105&rft_dat=%3Cjstor_pubme%3E25461472%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201398452&rft_id=info:pmid/18344321&rft_jstor_id=25461472&rfr_iscdi=true