Probability estimation in arithmetic and adaptive-Huffman entropy coders
Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1995-03, Vol.4 (3), p.237-246 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 3 |
container_start_page | 237 |
container_title | IEEE transactions on image processing |
container_volume | 4 |
creator | Duttweiler, D.L. Chamzas, C. |
description | Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards.< > |
doi_str_mv | 10.1109/83.366473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18289975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>366473</ieee_id><sourcerecordid>25919692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-944e22b1d83b605579375ea213663f182c2afaa6f123367e36e0456e7e88602e3</originalsourceid><addsrcrecordid>eNqF0UtLw0AQAOBFFFurB68eJAdRPKTu-3GUolYo6EHPYZNMcCWPupsI_fduSbE3Pc3CfMzMziB0TvCcEGzuNJszKbliB2hKDCcpxpwexjcWKlWEmwk6CeETY8IFkcdoQjTVxigxRctX3-U2d7XrNwmE3jW2d12buDax3vUfDfSuSGxbJra06959Q7ocqqqxbQJt77v1Jim6Enw4RUeVrQOc7eIMvT8-vC2W6erl6Xlxv0oLZmifGs6B0pyUmuUSC6EMUwIsJfEDrIpzFdRW1sqKUMakAiYBcyFBgdYSU2AzdDPWXfvua4gTZ40LBdS1baEbQqYYp4oYJqK8_lNSLbjmsc-_UBhipNnC2xEWvgvBQ5WtfVyY32QEZ9tLZJpl4yWivdwVHfIGyr3crT6Cqx2wobB15W1buPDrGJeUGxnZxcgcAOyzY5Mf_2uWZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25919692</pqid></control><display><type>article</type><title>Probability estimation in arithmetic and adaptive-Huffman entropy coders</title><source>IEEE Electronic Library (IEL)</source><creator>Duttweiler, D.L. ; Chamzas, C.</creator><creatorcontrib>Duttweiler, D.L. ; Chamzas, C.</creatorcontrib><description>Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards.< ></description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.366473</identifier><identifier>PMID: 18289975</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arithmetic ; Coding, codes ; Decoding ; Entropy coding ; Exact sciences and technology ; Hardware ; Image coding ; Information, signal and communications theory ; Probability ; Random variables ; Signal and communications theory ; Standards development ; Statistics ; Telecommunications and information theory ; Transform coding</subject><ispartof>IEEE transactions on image processing, 1995-03, Vol.4 (3), p.237-246</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-944e22b1d83b605579375ea213663f182c2afaa6f123367e36e0456e7e88602e3</citedby><cites>FETCH-LOGICAL-c392t-944e22b1d83b605579375ea213663f182c2afaa6f123367e36e0456e7e88602e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/366473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/366473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3462496$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18289975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duttweiler, D.L.</creatorcontrib><creatorcontrib>Chamzas, C.</creatorcontrib><title>Probability estimation in arithmetic and adaptive-Huffman entropy coders</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards.< ></description><subject>Applied sciences</subject><subject>Arithmetic</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Entropy coding</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Information, signal and communications theory</subject><subject>Probability</subject><subject>Random variables</subject><subject>Signal and communications theory</subject><subject>Standards development</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><subject>Transform coding</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLw0AQAOBFFFurB68eJAdRPKTu-3GUolYo6EHPYZNMcCWPupsI_fduSbE3Pc3CfMzMziB0TvCcEGzuNJszKbliB2hKDCcpxpwexjcWKlWEmwk6CeETY8IFkcdoQjTVxigxRctX3-U2d7XrNwmE3jW2d12buDax3vUfDfSuSGxbJra06959Q7ocqqqxbQJt77v1Jim6Enw4RUeVrQOc7eIMvT8-vC2W6erl6Xlxv0oLZmifGs6B0pyUmuUSC6EMUwIsJfEDrIpzFdRW1sqKUMakAiYBcyFBgdYSU2AzdDPWXfvua4gTZ40LBdS1baEbQqYYp4oYJqK8_lNSLbjmsc-_UBhipNnC2xEWvgvBQ5WtfVyY32QEZ9tLZJpl4yWivdwVHfIGyr3crT6Cqx2wobB15W1buPDrGJeUGxnZxcgcAOyzY5Mf_2uWZg</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Duttweiler, D.L.</creator><creator>Chamzas, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19950301</creationdate><title>Probability estimation in arithmetic and adaptive-Huffman entropy coders</title><author>Duttweiler, D.L. ; Chamzas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-944e22b1d83b605579375ea213663f182c2afaa6f123367e36e0456e7e88602e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Arithmetic</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Entropy coding</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Information, signal and communications theory</topic><topic>Probability</topic><topic>Random variables</topic><topic>Signal and communications theory</topic><topic>Standards development</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><topic>Transform coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duttweiler, D.L.</creatorcontrib><creatorcontrib>Chamzas, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duttweiler, D.L.</au><au>Chamzas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability estimation in arithmetic and adaptive-Huffman entropy coders</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1995-03-01</date><risdate>1995</risdate><volume>4</volume><issue>3</issue><spage>237</spage><epage>246</epage><pages>237-246</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18289975</pmid><doi>10.1109/83.366473</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1995-03, Vol.4 (3), p.237-246 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_18289975 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arithmetic Coding, codes Decoding Entropy coding Exact sciences and technology Hardware Image coding Information, signal and communications theory Probability Random variables Signal and communications theory Standards development Statistics Telecommunications and information theory Transform coding |
title | Probability estimation in arithmetic and adaptive-Huffman entropy coders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20estimation%20in%20arithmetic%20and%20adaptive-Huffman%20entropy%20coders&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Duttweiler,%20D.L.&rft.date=1995-03-01&rft.volume=4&rft.issue=3&rft.spage=237&rft.epage=246&rft.pages=237-246&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.366473&rft_dat=%3Cproquest_RIE%3E25919692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25919692&rft_id=info:pmid/18289975&rft_ieee_id=366473&rfr_iscdi=true |