Unsupervised Segmentation With Dynamical Units

In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-01, Vol.19 (1), p.168-182
Hauptverfasser: Ravishankar Rao, A., Cecchi, G.A., Peck, C.C., Kozloski, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 168
container_title IEEE transaction on neural networks and learning systems
container_volume 19
creator Ravishankar Rao, A.
Cecchi, G.A.
Peck, C.C.
Kozloski, J.R.
description In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.
doi_str_mv 10.1109/TNN.2007.905852
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18269948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359215</ieee_id><sourcerecordid>70297165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-48d39962cb63fba58fda0860edc2a09b341decc18e55dfb4a4d8bdcf152e9b63</originalsourceid><addsrcrecordid>eNp90c1LwzAYBvAgih_TswdBhqCeOt-kSZscZX7C0IMTjyFN3mpkbWfTCvvvzdiY4MFcEsjvfSBPCDmmMKIU1NX06WnEAPKRAiEF2yL7VHGaAKh0O56Bi0Qxlu-RgxA-ASgXkO2SPSpZphSX-2T0Wod-ju23D-iGL_heYd2Zzjf18M13H8ObRW0qb81s-Fr7LhySndLMAh6t9wGZ3t1Oxw_J5Pn-cXw9SSwH3iVculSpjNkiS8vCCFk6AzIDdJYZUEXKqUNrqUQhXFlww50snC2pYKjizIBcrmLnbfPVY-h05YPF2czU2PRBy1yAlJyJKC_-lTkwldNsCc_-wM-mb-v4CK0oS_O4ZERXK2TbJoQWSz1vfWXahaagl4XrWLheFq5XhceJ03VsX1Tofv264QjO18CEWGPZmtr6sHExC0T8suhOVs4j4uaap0IxKtIfwA-QJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912377778</pqid></control><display><type>article</type><title>Unsupervised Segmentation With Dynamical Units</title><source>IEEE Electronic Library (IEL)</source><creator>Ravishankar Rao, A. ; Cecchi, G.A. ; Peck, C.C. ; Kozloski, J.R.</creator><creatorcontrib>Ravishankar Rao, A. ; Cecchi, G.A. ; Peck, C.C. ; Kozloski, J.R.</creatorcontrib><description>In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2007.905852</identifier><identifier>PMID: 18269948</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Artificial Intelligence ; Binding problem ; Biological information theory ; Biology computing ; Classification ; Computer architecture ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Deconvolution ; Dynamics ; Exact sciences and technology ; Humans ; Layout ; Learning - physiology ; Nerve Net ; Networks ; Neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; oscillations ; Pattern Recognition, Automated ; phase correlation ; Quantum computing ; Segmentation ; Segments ; separation of mixtures ; Similarity ; Software ; Studies ; synchronization ; Visual system</subject><ispartof>IEEE transaction on neural networks and learning systems, 2008-01, Vol.19 (1), p.168-182</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-48d39962cb63fba58fda0860edc2a09b341decc18e55dfb4a4d8bdcf152e9b63</citedby><cites>FETCH-LOGICAL-c404t-48d39962cb63fba58fda0860edc2a09b341decc18e55dfb4a4d8bdcf152e9b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20005941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18269948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Cecchi, G.A.</creatorcontrib><creatorcontrib>Peck, C.C.</creatorcontrib><creatorcontrib>Kozloski, J.R.</creatorcontrib><title>Unsupervised Segmentation With Dynamical Units</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Binding problem</subject><subject>Biological information theory</subject><subject>Biology computing</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Deconvolution</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Layout</subject><subject>Learning - physiology</subject><subject>Nerve Net</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>oscillations</subject><subject>Pattern Recognition, Automated</subject><subject>phase correlation</subject><subject>Quantum computing</subject><subject>Segmentation</subject><subject>Segments</subject><subject>separation of mixtures</subject><subject>Similarity</subject><subject>Software</subject><subject>Studies</subject><subject>synchronization</subject><subject>Visual system</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c1LwzAYBvAgih_TswdBhqCeOt-kSZscZX7C0IMTjyFN3mpkbWfTCvvvzdiY4MFcEsjvfSBPCDmmMKIU1NX06WnEAPKRAiEF2yL7VHGaAKh0O56Bi0Qxlu-RgxA-ASgXkO2SPSpZphSX-2T0Wod-ju23D-iGL_heYd2Zzjf18M13H8ObRW0qb81s-Fr7LhySndLMAh6t9wGZ3t1Oxw_J5Pn-cXw9SSwH3iVculSpjNkiS8vCCFk6AzIDdJYZUEXKqUNrqUQhXFlww50snC2pYKjizIBcrmLnbfPVY-h05YPF2czU2PRBy1yAlJyJKC_-lTkwldNsCc_-wM-mb-v4CK0oS_O4ZERXK2TbJoQWSz1vfWXahaagl4XrWLheFq5XhceJ03VsX1Tofv264QjO18CEWGPZmtr6sHExC0T8suhOVs4j4uaap0IxKtIfwA-QJA</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Ravishankar Rao, A.</creator><creator>Cecchi, G.A.</creator><creator>Peck, C.C.</creator><creator>Kozloski, J.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>Unsupervised Segmentation With Dynamical Units</title><author>Ravishankar Rao, A. ; Cecchi, G.A. ; Peck, C.C. ; Kozloski, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-48d39962cb63fba58fda0860edc2a09b341decc18e55dfb4a4d8bdcf152e9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Binding problem</topic><topic>Biological information theory</topic><topic>Biology computing</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Deconvolution</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Layout</topic><topic>Learning - physiology</topic><topic>Nerve Net</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>oscillations</topic><topic>Pattern Recognition, Automated</topic><topic>phase correlation</topic><topic>Quantum computing</topic><topic>Segmentation</topic><topic>Segments</topic><topic>separation of mixtures</topic><topic>Similarity</topic><topic>Software</topic><topic>Studies</topic><topic>synchronization</topic><topic>Visual system</topic><toplevel>online_resources</toplevel><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Cecchi, G.A.</creatorcontrib><creatorcontrib>Peck, C.C.</creatorcontrib><creatorcontrib>Kozloski, J.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravishankar Rao, A.</au><au>Cecchi, G.A.</au><au>Peck, C.C.</au><au>Kozloski, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Segmentation With Dynamical Units</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2008-01</date><risdate>2008</risdate><volume>19</volume><issue>1</issue><spage>168</spage><epage>182</epage><pages>168-182</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18269948</pmid><doi>10.1109/TNN.2007.905852</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2008-01, Vol.19 (1), p.168-182
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_pubmed_primary_18269948
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture
Artificial Intelligence
Binding problem
Biological information theory
Biology computing
Classification
Computer architecture
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Deconvolution
Dynamics
Exact sciences and technology
Humans
Layout
Learning - physiology
Nerve Net
Networks
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
oscillations
Pattern Recognition, Automated
phase correlation
Quantum computing
Segmentation
Segments
separation of mixtures
Similarity
Software
Studies
synchronization
Visual system
title Unsupervised Segmentation With Dynamical Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Segmentation%20With%20Dynamical%20Units&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ravishankar%20Rao,%20A.&rft.date=2008-01&rft.volume=19&rft.issue=1&rft.spage=168&rft.epage=182&rft.pages=168-182&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2007.905852&rft_dat=%3Cproquest_RIE%3E70297165%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912377778&rft_id=info:pmid/18269948&rft_ieee_id=4359215&rfr_iscdi=true